Predicting siRNA potency with random forests and support vector machines

被引:0
作者
Liangjiang Wang
Caiyan Huang
Jack Y Yang
机构
[1] Clemson University,Department of Genetics and Biochemistry
[2] Purdue University,School of Electrical and Computer Engineering
[3] Indiana University School of Medicine,Center for Computational Biology and Bioinformatics
[4] Indiana University Purdue University,Center for Research in Biological Systems
[5] University of California at San Diego,undefined
来源
BMC Genomics | / 11卷
关键词
Support Vector Machine; Random Forest; Support Vector Machine Classifier; Antisense Strand; Matthews Correlation Coefficient;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 76 条
[1]  
Hannon GJ(2002)RNA interference Nature 418 244-251
[2]  
Hannon GJ(2004)Unlocking the potential of the human genome with RNA interference Nature 431 371-378
[3]  
Rossi JJ(2004)Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference Nucleic Acids Res 32 936-948
[4]  
Ui-Tei K(2003)Functional siRNAs and miRNAs exhibit strand bias Cell 115 209-216
[5]  
Naito Y(2003)Asymmetry in the assembly of the RNAi enzyme complex Cell 115 199-208
[6]  
Takahashi F(2005)Design of siRNAs producing unstructured guide-RNAs results in improved RNA interference efficiency Nat Biotechnol 23 1440-1444
[7]  
Haraguchi T(2004)Predicting the efficacy of short oligonucleotides in antisense and RNAi experiments with boosted genetic programming Bioinformatics 20 3055-3063
[8]  
Ohki-Hamazaki H(2007)More complete gene silencing by fewer siRNAs: transparent optimized design and biophysical signature Nucleic Acids Res 35 433-440
[9]  
Juni A(2009)Selection of hyperfunctional siRNAs with improved potency and specificity Nucleic Acids Res 37 e152-1001
[10]  
Ueda R(2005)Design of a genome-wide siRNA library using an artificial neural network Nat Biotechnol 23 995-1601