Performance of stroke patients using a brain-computer interface during motor imagery: a systematic review

被引:1
|
作者
Santos E.M. [1 ,2 ]
Fernandes C.A. [3 ]
Castellano G. [2 ,4 ]
机构
[1] Federal Institute of Education, Science and Technology of Ceará, CE, Cedro
[2] Neurophysics Group, Institute of Physics Gleb Wataghin, University of Campinas, SP, Campinas
[3] Anhembi Morumbi University, SP, Piracicaba
[4] Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), SP, Campinas
基金
巴西圣保罗研究基金会;
关键词
Brain-computer interfaces; Electroencephalography; Motor imagery; Rehabilitation; Stroke;
D O I
10.1007/s42600-023-00284-w
中图分类号
学科分类号
摘要
Purpose: Brain-computer interface (BCI) systems based on motor imagery (MI) have been suggested as promising tools for the neurorehabilitation of stroke individuals. However, BCIs remain poor performers outside research environments and have been unable to reach the target public. This paper aimed to compile studies that evaluated motor imagery (MI)-based BCI intervention for stroke subjects, analyze the methodological quality of these studies, and verify the relationship between the effects of the interventions and performance achieved in MI tasks. Methods: Papers published between 2008 and 2020 were retrieved from five databases. The quality of the manuscripts was assessed using the Critical Review Form for Quantitative Studies. Results: Fifteen articles met our eligibility criteria, with seven evaluated as excellent, four as very good, and four as good. Performance rates ranged from 58 to 90%, with two-thirds of studies achieving accuracies over 70%. Conclusion: Overall, studies reported a change in both the quality and the range of motion of the paretic limb after MI-BCI therapy, particularly when combined with conventional therapy. MI-BCI also assisted patients to assimilate tasks already forgotten by the brain as a result of stroke, and transfer this improvement to new circumstances. This review suggests that MI-BCI interventions may be a promising rehabilitation approach for stroke subjects. © 2023, The Author(s), under exclusive licence to The Brazilian Society of Biomedical Engineering.
引用
收藏
页码:451 / 465
页数:14
相关论文
共 50 条
  • [1] Applying Combined Action Observation and Motor Imagery to Enhance Classification Performance in a Brain-Computer Interface System for Stroke Patients
    Rungsirisilp, Nuttawat
    Wongsawat, Yodchanan
    IEEE ACCESS, 2022, 10 : 73145 - 73155
  • [2] Performance variation in motor imagery brain-computer interface: A brief review
    Ahn, Minkyu
    Jun, Sung Chan
    JOURNAL OF NEUROSCIENCE METHODS, 2015, 243 : 103 - 110
  • [3] Facilitating motor imagery-based brain-computer interface for stroke patients using passive movement
    Arvaneh, Mahnaz
    Guan, Cuntai
    Ang, Kai Keng
    Ward, Tomas E.
    Chua, Karen S. G.
    Kuah, Christopher Wee Keong
    Joseph, Gopal Ephraim Joseph
    Phua, Kok Soon
    Wang, Chuanchu
    NEURAL COMPUTING & APPLICATIONS, 2017, 28 (11) : 3259 - 3272
  • [4] Brain-Computer Interface Boosts Motor Imagery Practice during Stroke Recovery
    Pichiorri, Floriana
    Morone, Giovanni
    Petti, Manuela
    Toppi, Jlenia
    Pisotta, Iolanda
    Molinari, Marco
    Paolucci, Stefano
    Inghilleri, Maurizio
    Astolfi, Laura
    Cincotti, Febo
    Mattia, Donatella
    ANNALS OF NEUROLOGY, 2015, 77 (05) : 851 - 865
  • [5] Gamification of motor imagery brain-computer interface training protocols: A systematic review
    Atilla, Fred
    Postma, Marie
    Alimardani, Maryam
    COMPUTERS IN HUMAN BEHAVIOR REPORTS, 2024, 16
  • [6] A Review of Online Classification Performance in Motor Imagery-Based Brain-Computer Interfaces for Stroke Neurorehabilitation
    Vavoulis, Athanasios
    Figueiredo, Patricia
    Vourvopoulos, Athanasios
    SIGNALS, 2023, 4 (01): : 73 - 86
  • [7] Neurophysiological substrates of stroke patients with motor imagery-based brain-computer interface training
    Li, Mingfen
    Liu, Ye
    Wu, Yi
    Liu, Sirao
    Jia, Jie
    Zhang, Liqing
    INTERNATIONAL JOURNAL OF NEUROSCIENCE, 2014, 124 (06) : 403 - 415
  • [8] Motor rehabilitation for hemiparetic stroke patients using a brain-computer interface method
    Cho, Woosang
    Heilinger, Alexander
    Ortner, Rupert
    Murovec, Nensi
    Xu, Ren
    Swift, James
    Zehetner, Manuela
    Schobesberger, Stefan
    Edlinger, Guenter
    Guger, Christoph
    2018 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2018, : 1001 - 1005
  • [9] High Classification Accuracy of a Motor Imagery Based Brain-Computer Interface for Stroke Rehabilitation Training
    Irimia, Danut C.
    Oliner, Rupert
    Poboroniuc, Marian S.
    Ignat, Bogdan E.
    Guger, Christoph
    FRONTIERS IN ROBOTICS AND AI, 2018, 5
  • [10] Brain-computer interface in stroke rehabilitation
    Ang, Kai Keng
    Guan, Cuntai
    Journal of Computing Science and Engineering, 2013, 7 (02) : 139 - 146