We use the Temperley-Lieb algebra to define a family of totally nonnegative polynomials of the form
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \Sigma _{{\upsigma \in S_{n} }} f(\upsigma )x_{{1,\upsigma (1)}} \cdots x_{{n,\upsigma (n)}} $$\end{document}. The cone generated by these polynomials contains all totally nonnegative polynomials of the form
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \Delta _{{J,J' }} (x)\Delta _{{L,L' }} (x) - \Delta _{{I,I' }} (x)\Delta _{{K,K' }} (x) $$\end{document}, where,
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \Delta _{{I,I' }} (x), \ldots ,\Delta _{{K,K' }} (x) $$\end{document} are matrix minors. We also give new conditions on the sets I,...,K′ which characterize differences of products of minors which are totally nonnegative.