Temperley-Lieb Immanants

被引:0
|
作者
Brendon Rhoades
Mark Skandera
机构
[1] XXX,Department of Mathematics
来源
Annals of Combinatorics | 2005年 / 9卷
关键词
15A15; 05E15; 20C08; Temperley-Lieb algebra; immanant; total nonnegativity; matrix minor;
D O I
暂无
中图分类号
学科分类号
摘要
We use the Temperley-Lieb algebra to define a family of totally nonnegative polynomials of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Sigma _{{\upsigma \in S_{n} }} f(\upsigma )x_{{1,\upsigma (1)}} \cdots x_{{n,\upsigma (n)}} $$\end{document}. The cone generated by these polynomials contains all totally nonnegative polynomials of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Delta _{{J,J' }} (x)\Delta _{{L,L' }} (x) - \Delta _{{I,I' }} (x)\Delta _{{K,K' }} (x) $$\end{document}, where, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Delta _{{I,I' }} (x), \ldots ,\Delta _{{K,K' }} (x) $$\end{document} are matrix minors. We also give new conditions on the sets I,...,K′ which characterize differences of products of minors which are totally nonnegative.
引用
收藏
页码:451 / 494
页数:43
相关论文
共 50 条
  • [1] Temperley-Lieb immanants
    Rhoades, Brendon
    Skandera, Mark
    ANNALS OF COMBINATORICS, 2005, 9 (04) : 451 - 494
  • [2] Boundary weights for Temperley-Lieb and dilute Temperley-Lieb models
    Behrend, RE
    Pearce, PA
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1997, 11 (23): : 2833 - 2847
  • [3] Temperley-Lieb Crystals
    Nguyen, Son
    Pylyavskyy, Pavlo
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2025, 2025 (07)
  • [4] On the Temperley-Lieb Model
    Lima-Santos, A.
    JOURNAL OF STATISTICAL PHYSICS, 2016, 165 (05) : 953 - 969
  • [5] Temperley-Lieb stochastic processes
    Pearce, PA
    Rittenberg, V
    de Gier, J
    Nienhuis, B
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (45): : L661 - L668
  • [6] Entanglement and the Temperley-Lieb category
    Brannan, Michael
    Collins, Benoit
    TOPOLOGICAL PHASES OF MATTER AND QUANTUM COMPUTATION, 2020, 747 : 27 - 50
  • [7] The homology of the Temperley-Lieb algebras
    Boyd, Rachael
    Hepworth, Richard
    GEOMETRY & TOPOLOGY, 2024, 28 (03) : 1437 - 1499
  • [8] Temperley-Lieb Quantum Channels
    Brannan, Michael
    Collins, Benoit
    Lee, Hun Hee
    Youn, Sang-Gyun
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 376 (02) : 795 - 839
  • [9] CALCULATIONS WITH THE TEMPERLEY-LIEB ALGEBRA
    LICKORISH, WBR
    COMMENTARII MATHEMATICI HELVETICI, 1992, 67 (04) : 571 - 591
  • [10] Framization of the Temperley-Lieb algebra
    Goundaroulis, Dimos
    Juyumaya, Jesus
    Kontogeorgis, Aristides
    Lambropoulou, Sofia
    MATHEMATICAL RESEARCH LETTERS, 2017, 24 (02) : 299 - 345