The Davies Method for Heat Kernel Upper Bounds of Non-Local Dirichlet Forms on Ultra-Metric Spaces

被引:0
作者
Jin Gao
机构
[1] Tsinghua University,Department of Mathematical Sciences
来源
Acta Mathematica Scientia | 2020年 / 40卷
关键词
heat kernel; ultra-metric; Davies method; 35K08; 28A80; 60J35;
D O I
暂无
中图分类号
学科分类号
摘要
We apply the Davies method to give a quick proof for the upper estimate of the heat kernel for the non-local Dirichlet form on the ultra-metric space. The key observation is that the heat kernel of the truncated Dirichlet form vanishes when two spatial points are separated by any ball of a radius larger than the truncated range. This new phenomenon arises from the ultra-metric property of the space.
引用
收藏
页码:1240 / 1248
页数:8
相关论文
共 28 条
[1]  
Bendikov A(2014)Isotropic Markov semigroups on ultra-metric spaces Russian Mathematical Surveys 69 589-680
[2]  
Grigor’yan A(1987)Upper bounds for symmetric Markov transition functions Ann Inst H Poincare Probab Statist 23 245-287
[3]  
Pittet C(2008)Weighted Poincare inequality and heat kernel estimates for finite range jump processes Math Ann 342 833-883
[4]  
Carlen E A(1987)Explicit constants for Gaussian upper bounds on heat kernels Amer J Math 109 319-333
[5]  
Kusuoka S(2017)Lower estimates of heat kernels for non-local Dirichlet forms on metric measure spaces J Funct Anal 272 3311-3346
[6]  
Stroock D W(2018)Two-sided estimates of heat kernels of jump type Dirichlet forms Adv Math 330 433-515
[7]  
Chen Z Q(2010)Comparison inequalities for heat semigroups and heat kernels on metric measure spaces J Funct Anal 259 2613-2641
[8]  
Kim P(2014)Estimates of heat kernels for non-local regular Dirichlet forms Trans Amer Math Soc 366 6397-6441
[9]  
Kumagai T(2012)Lower inequalities of heat semigroups by using parabolic maximum principle Acta Math Sci 32B 1349-1364
[10]  
Davies E B(2018)The Davies method revisited for heat kernel upper bounds of regular Dirichlet forms on metric measure spaces Forum Math 30 1129-1155