Boundedness of commutators of θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document}-type Calderón–Zygmund operators on generalized weighted Morrey spaces over RD-spaces

被引:0
作者
Qiumeng Li
Haibo Lin
Xinyu Wang
机构
[1] China Agricultural University,College of Science
关键词
Commutator; -Type Calderón–Zygmund operator; RD-space; Generalized weighted Morrey space; Primary 43A85; Secondary 47B47; 42B20;
D O I
10.1007/s13324-021-00614-0
中图分类号
学科分类号
摘要
Let (X,d,μ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\mathcal {X}},\,d,\,\mu )$$\end{document} be an RD-space. In this paper, under some slightly weaker conditions, we establish the boundedness of the commutators generated by the θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document}-type Calderón–Zygmund operators and BMO functions on the generalized weighted Morrey spaces M~p,ψ(ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\widetilde{{\mathcal {M}}}^{p,\,\psi }(\omega )$$\end{document} and the generalized weighted Morrey spaces of LlnL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L\ln L$$\end{document} type M~LlnL1,ψ(ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\widetilde{{\mathcal {M}}}^{1,\,\psi }_{L\ln L}(\omega )$$\end{document} over (X,d,μ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\mathcal {X}},\,d,\,\mu )$$\end{document}.
引用
收藏
相关论文
共 73 条
  • [1] Adams DR(2012)Morrey spaces in harmonic analysis Ark. Mat. 50 201-230
  • [2] Xiao J(2020)Generalized weighted Morrey spaces on RD-spaces Rocky Mt. J. Math. 50 1277-1293
  • [3] Chou J(1977)Extensions of Hardy spaces and their use in analysis Bull. Am. Math. Soc. 83 569-645
  • [4] Li X(2018)Extension and boundedness of operators on Morrey spaces from extrapolation techniques and embeddings J. Geom. Anal. 28 3081-3108
  • [5] Tong Y(2020)Boundedness properties in a family of weighted Morrey spaces with emphasis on power weights J. Funct. Anal. 279 108687-1038
  • [6] Lin H(2021)Two weight commutators on spaces of homogeneous type and applications J. Geom. Anal. 31 980-111
  • [7] Coifman RR(2007)Old and new Morrey spaces with heat kernel bounds J. Fourier Anal. Appl. 13 87-9
  • [8] Weiss G(2015)A remark on two generalized Orlicz–Morrey spaces J. Approx. Theory 198 1-340
  • [9] Duoandikoetxea J(2016)Interpolation of generalized Morrey spaces Rev. Mat. Complut. 29 295-504
  • [10] Rosenthal M(2010)A framework for non-homogeneous analysis on metric spaces, and the RBMO space of Tolsa Publ. Mat. 54 485-3899