Phase Transition and Level-Set Percolation for the Gaussian Free Field

被引:0
|
作者
Pierre-François Rodriguez
Alain-Sol Sznitman
机构
[1] ETH Zürich,Departement Mathematik
来源
关键词
Percolate; Poisson Point Process; Connectivity Function; Simple Random Walk; Percolative Property;
D O I
暂无
中图分类号
学科分类号
摘要
We consider level-set percolation for the Gaussian free field on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Z}^{d}}$$\end{document}, d ≥ 3, and prove that, as h varies, there is a non-trivial percolation phase transition of the excursion set above level h for all dimensions d ≥ 3. So far, it was known that the corresponding critical level h*(d) satisfies h*(d) ≥ 0 for all d ≥ 3 and that h*(3) is finite, see Bricmont et al. (J Stat Phys 48(5/6):1249–1268, 1987). We prove here that h*(d) is finite for all d ≥ 3. In fact, we introduce a second critical parameter h** ≥ h*, show that h**(d) is finite for all d ≥ 3, and that the connectivity function of the excursion set above level h has stretched exponential decay for all h > h**. Finally, we prove that h* is strictly positive in high dimension. It remains open whether h* and h** actually coincide and whether h* > 0 for all d ≥ 3.
引用
收藏
页码:571 / 601
页数:30
相关论文
共 50 条
  • [41] A RIGOROUS AND EFFICIENT GPU IMPLEMENTATION OF LEVEL-SET SPARSE FIELD ALGORITHM
    Galluzzo, Francesca
    Speciale, Nicolo
    Bernard, Olivier
    2012 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2012), 2012, : 1705 - 1708
  • [42] The level-set method applied to droplet dynamics in the presence of an electric field
    Bjorklund, Erik
    COMPUTERS & FLUIDS, 2009, 38 (02) : 358 - 369
  • [43] Level-set simulation of anisotropic phase transformations via faceted growth
    Moghadam, M. M.
    Voorhees, P. W.
    COMPUTATIONAL MATERIALS SCIENCE, 2018, 143 : 454 - 461
  • [44] Level-Set Interface Description Approach for Thermal Phase Change of Nanofluids
    Yahyaee, Ali
    Bahman, Amir Sajjad
    Olesen, Klaus
    Sorensen, Henrik
    NANOMATERIALS, 2022, 12 (13)
  • [45] A level-set method for two-phase flows with soluble surfactant
    Xu, Jian-Jun
    Shi, Weidong
    Lai, Ming-Chih
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 353 : 336 - 355
  • [46] PERCOLATION FOR LEVEL-SETS OF GAUSSIAN FREE FIELDS ON METRIC GRAPHS
    Ding, Jian
    Wirth, Mateo
    ANNALS OF PROBABILITY, 2020, 48 (03): : 1411 - 1435
  • [47] LEVEL-SET METHOD FOR MULTIPHASE FLOWS
    Yap, Y. F.
    Chai, J. C.
    COMPUTATIONAL THERMAL SCIENCES, 2012, 4 (06): : 507 - 515
  • [48] A continuum level-set model of fracture
    Antonios I. Arvanitakis
    International Journal of Fracture, 2020, 225 : 239 - 249
  • [49] Level-set methods for convex optimization
    Aleksandr Y. Aravkin
    James V. Burke
    Dmitry Drusvyatskiy
    Michael P. Friedlander
    Scott Roy
    Mathematical Programming, 2019, 174 : 359 - 390
  • [50] Speed Parameters in the Level-Set Segmentation
    Cinque, Luigi
    Cossu, Rossella
    COMPUTER ANALYSIS OF IMAGES AND PATTERNS, CAIP 2015, PT II, 2015, 9257 : 541 - 553