Phase Transition and Level-Set Percolation for the Gaussian Free Field

被引:0
作者
Pierre-François Rodriguez
Alain-Sol Sznitman
机构
[1] ETH Zürich,Departement Mathematik
来源
Communications in Mathematical Physics | 2013年 / 320卷
关键词
Percolate; Poisson Point Process; Connectivity Function; Simple Random Walk; Percolative Property;
D O I
暂无
中图分类号
学科分类号
摘要
We consider level-set percolation for the Gaussian free field on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Z}^{d}}$$\end{document}, d ≥ 3, and prove that, as h varies, there is a non-trivial percolation phase transition of the excursion set above level h for all dimensions d ≥ 3. So far, it was known that the corresponding critical level h*(d) satisfies h*(d) ≥ 0 for all d ≥ 3 and that h*(3) is finite, see Bricmont et al. (J Stat Phys 48(5/6):1249–1268, 1987). We prove here that h*(d) is finite for all d ≥ 3. In fact, we introduce a second critical parameter h** ≥ h*, show that h**(d) is finite for all d ≥ 3, and that the connectivity function of the excursion set above level h has stretched exponential decay for all h > h**. Finally, we prove that h* is strictly positive in high dimension. It remains open whether h* and h** actually coincide and whether h* > 0 for all d ≥ 3.
引用
收藏
页码:571 / 601
页数:30
相关论文
共 28 条
[1]  
Bricmont J.(1987)Percolation in strongly correlated systems: the massless Gaussian field J. Stat. Phys. 48 1249-1268
[2]  
Lebowitz J.L.(1985)An upper bound on the critical percolation probability for the three-dimensional cubic lattice Ann. Prob. 13 478-491
[3]  
Maes C.(2004)Percolation transition for some excursion sets Elec. J. Prob. 10 255-292
[4]  
Campanino M.(1988)On the uniqueness of the infinite occupied cluster in dependent two-dimensional site percolation Ann. Prob. 16 1147-1157
[5]  
Russo L.(1990)The supercritical phase of percolation is well-behaved Proc. Roy. Soc. (London), Series A 430 439-457
[6]  
Garet O.(2006)Uniqueness and non-uniqueness in percolation theory Probab. Surv. 3 289-344
[7]  
Gandolfi A.(1986)Percolation in strongly correlated systems Phys. A 138 194-205
[8]  
Keane M.(1997)Domination by product measures Ann. Prob. 25 71-95
[9]  
Russo L.(1956)Random walks in multidimensional spaces, especially on periodic lattices J. Soc. Indus. Appl. Math. 4 241-260
[10]  
Grimmett G.R.(1983)Percolation in random fields I Teoret. Mat. Fiz. 55 246-256