Abstract Hilbert Schemes

被引:0
|
作者
M. Artin
J. J. Zhang
机构
[1] Massachusetts Institute of Technology,Department of Mathematics
[2] University of Washington,Department of Mathematics
来源
Algebras and Representation Theory | 2001年 / 4卷
关键词
basechange; Grothendieck category; Hilbert scheme; noncommutative projective scheme;
D O I
暂无
中图分类号
学科分类号
摘要
In analogy with classical projective algebraic geometry, Hilbert functors can be defined for objects in any Abelian category. We study the moduli problem for such objects. Using Grothendieck's general framework. We show that with suitable hypotheses the Hilbert functor is representable by an algebraic space locally of finite type over the base field. For the category of the graded modules over a strongly Noetherian graded ring, the Hilbert functor of graded modules with a fixed Hilbert series is represented by a commutative projective scheme. For the projective scheme corresponding to a suitable noncommutative graded algebra, the Hilbert functor is represented by a countable union of commutative projective schemes.
引用
收藏
页码:305 / 394
页数:89
相关论文
共 50 条
  • [1] Abstract Hilbert schemes
    Artin, M
    Zhang, JJ
    ALGEBRAS AND REPRESENTATION THEORY, 2001, 4 (04) : 305 - 394
  • [2] Inequidimensionality of Hilbert schemes
    Chang, MC
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (09) : 2521 - 2526
  • [3] REPRESENTABILITY OF HILBERT SCHEMES AND HILBERT STACKS OF POINTS
    Rydh, David
    COMMUNICATIONS IN ALGEBRA, 2011, 39 (07) : 2632 - 2646
  • [4] QUIVER VARIETIES AND HILBERT SCHEMES
    Kuznetsov, Alexander
    MOSCOW MATHEMATICAL JOURNAL, 2007, 7 (04) : 673 - 697
  • [5] Hilbert schemes of 8 points
    Cartwright, Dustin A.
    Erman, Daniel
    Velasco, Mauricio
    Viray, Bianca
    ALGEBRA & NUMBER THEORY, 2009, 3 (07) : 763 - 795
  • [6] From Oil Fields to Hilbert Schemes
    Kreuzer, Martin
    Poulisse, Hennie
    Robbiano, Lorenzo
    APPROXIMATE COMMUTATIVE ALGEBRA, 2009, : 1 - +
  • [7] Hilbert Schemes for Quantum Planes are Projective
    Chan, Daniel
    ALGEBRAS AND REPRESENTATION THEORY, 2010, 13 (01) : 119 - 126
  • [8] Vertex Operators, Grassmannians, and Hilbert Schemes
    Erik Carlsson
    Communications in Mathematical Physics, 2010, 300 : 599 - 613
  • [9] Two Hilbert Schemes in Computer Vision
    Lieblich, Max
    Van Meter, Lucas
    SIAM JOURNAL ON APPLIED ALGEBRA AND GEOMETRY, 2020, 4 (02): : 297 - 321
  • [10] Hilbert Schemes for Quantum Planes are Projective
    Daniel Chan
    Algebras and Representation Theory, 2010, 13 : 119 - 126