Hierarchically porous and high-strength carbon aerogel-based composite for solar-driven interfacial evaporation

被引:0
|
作者
Zhicong Gan
Shuang Zhao
Zhen Zhang
Kunfeng Li
Zhifang Fei
Xiaohua Li
Peng Zhang
Zichun Yang
机构
[1] Naval University of Engineering,School of Power Engineering
关键词
Carbon aerogel; Carbon fiber felt; Composite material; Hierarchical porous; Mechanical properties; Interfacial evaporation;
D O I
暂无
中图分类号
学科分类号
摘要
The carbon aerogels prepared using the principle of acid-base two-step catalysis have a high specific surface area (596.367 m2g−1) and low thermal conductivity (0.0625 W/(m K)), which enable them to efficiently absorb sunlight and provide an excellent thermal insulation effect.The difference in shrinkage between carbon fiber felts and carbon aerogels is ingeniously utilized, so the composites have micron-scale macropores and defects to provide channels for vapor escape.Under 1-sun illumination, the evaporation rates of the composites reach 1.131 and 1.046 kg m−2 h−1 in pure water and seawater, respectively, with an evaporation efficiency of 81%.Due to the composite reinforcement of the highly elastic carbon fiber felts, the composites are able to endure a stress of 25.6 MPa when the strain reaches 75%. The strategy of carbon fiber felts reinforcement not only enhances the mechanical properties and durability of the composite but also avoids the brittle fracture of pure carbon aerogels.The obtained composites combine low-cost effectiveness with high mechanical properties and durability.
引用
收藏
页码:388 / 400
页数:12
相关论文
共 50 条
  • [1] Hierarchically porous and high-strength carbon aerogel-based composite for solar-driven interfacial evaporation
    Gan, Zhicong
    Zhao, Shuang
    Zhang, Zhen
    Li, Kunfeng
    Fei, Zhifang
    Li, Xiaohua
    Zhang, Peng
    Yang, Zichun
    JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, 2023, 107 (02) : 388 - 400
  • [2] Cotton fiber-based composite aerogel derived from waste biomass for high-performance solar-driven interfacial evaporation
    Liu, Mingyuan
    He, Xinyang
    Gu, Jiatai
    Li, Zhen
    Liu, Huijie
    Liu, Wendi
    Zhang, Yue
    Zheng, Maorong
    Yu, Jianyong
    Wang, Liming
    Qin, Xiaohong
    INDUSTRIAL CROPS AND PRODUCTS, 2024, 211
  • [3] Full biomass-derived multifunctional aerogel for solar-driven interfacial evaporation
    Wu, Jun
    Yang, Xinyue
    Jia, Xiaohua
    Yang, Jin
    Miao, Xiao
    Shao, Dan
    Song, Haojie
    Li, Yong
    CHEMICAL ENGINEERING JOURNAL, 2023, 471
  • [4] Hydrophobic and porous carbon nanofiber membrane for high performance solar-driven interfacial evaporation with excellent salt resistance
    Zhang, Wei-miao
    Yan, Jun
    Su, Qin
    Han, Jiang
    Gao, Jie-feng
    Journal of Colloid and Interface Science, 2022, 612 : 66 - 75
  • [5] Hydrophobic and porous carbon nanofiber membrane for high performance solar-driven interfacial evaporation with excellent salt resistance
    Zhang, Wei-miao
    Yan, Jun
    Su, Qin
    Han, Jiang
    Gao, Jie-feng
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 612 : 66 - 75
  • [6] A Janus porous carbon nanotubes/poly (vinyl alcohol) composite evaporator for efficient solar-driven interfacial water evaporation
    Jian, Hongwei
    Qi, Qingbin
    Wang, Wei
    Yu, Dan
    Separation and Purification Technology, 2021, 264
  • [7] A Janus porous carbon nanotubes/poly (vinyl alcohol) composite evaporator for efficient solar-driven interfacial water evaporation
    Jian, Hongwei
    Qi, Qingbin
    Wang, Wei
    Yu, Dan
    SEPARATION AND PURIFICATION TECHNOLOGY, 2021, 264
  • [8] PTFE-based composite nanofiber membranes for solar-driven interfacial water evaporation
    Yu, Mengmeng
    Jiang, Guohua
    Demir, Muslum
    Sun, Yanfang
    Wang, Rui
    Liu, Tianqi
    MATERIALS TODAY COMMUNICATIONS, 2022, 32
  • [9] Carbon nanodots-based interfacial nanofluid for high-performance solar-driven water evaporation
    Canh, Nguyen Van
    Hang, Nguyen Thi Nhat
    Cuong, Nguyen Trong
    Hoa, Nguyen Hiep
    Tuyet, Cu Thi Anh
    Ha, Nguyen Ngoc
    Phong, Le Thi Hong
    Le, Phuoc Huu
    Luu, Tran Le
    Dao, Van-Duong
    Nguyen, Vanthan
    DIAMOND AND RELATED MATERIALS, 2024, 149
  • [10] Solar-Driven Interfacial Water Evaporation Using Open-Porous PDMS Embedded with Carbon Nanoparticles
    Wang, Shuzhe
    Almenabawy, Sara M.
    Kherani, Nazir P.
    Leung, Siu Ning
    O'Brien, Paul G.
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (04) : 3378 - 3386