Eigenvalue distributions of random unitary matrices

被引:0
|
作者
K. Wieand
机构
[1] Department of Health Studies,
[2] University of Chicago,undefined
[3] 5841 S. Maryland Ave.,undefined
[4] MC 2007,undefined
[5] Chicago,undefined
[6] IL 60637,undefined
[7] USA. e-mail: klwieand@post.harvard.edu,undefined
来源
Probability Theory and Related Fields | 2002年 / 123卷
关键词
Unit Circle; Random Matrix; Unitary Group; Unitary Matrice; Eigenvalue Distribution;
D O I
暂无
中图分类号
学科分类号
摘要
 Let U be an n × n random matrix chosen from Haar measure on the unitary group. For a fixed arc of the unit circle, let X be the number of eigenvalues of M which lie in the specified arc. We study this random variable as the dimension n grows, using the connection between Toeplitz matrices and random unitary matrices, and show that (X -E [X])/(\Var (X))1/2 is asymptotically normally distributed. In addition, we show that for several fixed arcs I1, ..., Im, the corresponding random variables are jointly normal in the large n limit.
引用
收藏
页码:202 / 224
页数:22
相关论文
共 50 条
  • [41] A Class of Random Matrices
    Kyrychenko, O. L.
    CYBERNETICS AND SYSTEMS ANALYSIS, 2024, 60 (01) : 39 - 44
  • [42] A Class of Random Matrices
    O. L. Kyrychenko
    Cybernetics and Systems Analysis, 2024, 60 : 39 - 44
  • [43] RANDOM TOEPLITZ OPERATORS AND EIGENVALUE DISTRIBUTION
    Ke, Wen-Fong
    Lai, King-Fai
    Lee, Tsung-Lin
    Wong, Ngai-Ching
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2016, 17 (09) : 1717 - 1728
  • [44] Images of eigenvalue distributions under power maps
    Eric M. Rains
    Probability Theory and Related Fields, 2003, 125 : 522 - 538
  • [45] Almost Commuting Unitary Matrices Related to Time Reversal
    Terry A. Loring
    Adam P. W. Sørensen
    Communications in Mathematical Physics, 2013, 323 : 859 - 887
  • [46] Almost Commuting Unitary Matrices Related to Time Reversal
    Loring, Terry A.
    Sorensen, Adam P. W.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 323 (03) : 859 - 887
  • [47] Some algorithms for calculating unitary matrices for quantum circuits
    Gerdt, V. P.
    Prokopenya, A. N.
    PROGRAMMING AND COMPUTER SOFTWARE, 2010, 36 (02) : 111 - 116
  • [48] Some algorithms for calculating unitary matrices for quantum circuits
    V. P. Gerdt
    A. N. Prokopenya
    Programming and Computer Software, 2010, 36 : 111 - 116
  • [49] The distribution of the first eigenvalue spacing at the hard edge of the laguerre unitary ensemble
    Forrester, Peter J.
    Witte, Nicholas S.
    KYUSHU JOURNAL OF MATHEMATICS, 2007, 61 (02) : 457 - 526
  • [50] FROM RANDOM MATRICES TO RANDOM ANALYTIC FUNCTIONS
    Krishnapur, Manjunath
    ANNALS OF PROBABILITY, 2009, 37 (01) : 314 - 346