Eigenvalue distributions of random unitary matrices
被引:0
作者:
K. Wieand
论文数: 0引用数: 0
h-index: 0
机构:Department of Health Studies,
K. Wieand
机构:
[1] Department of Health Studies,
[2] University of Chicago,undefined
[3] 5841 S. Maryland Ave.,undefined
[4] MC 2007,undefined
[5] Chicago,undefined
[6] IL 60637,undefined
[7] USA. e-mail: klwieand@post.harvard.edu,undefined
来源:
Probability Theory and Related Fields
|
2002年
/
123卷
关键词:
Unit Circle;
Random Matrix;
Unitary Group;
Unitary Matrice;
Eigenvalue Distribution;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Let U be an n × n random matrix chosen from Haar measure on the unitary group. For a fixed arc of the unit circle, let X be the number of eigenvalues of M which lie in the specified arc. We study this random variable as the dimension n grows, using the connection between Toeplitz matrices and random unitary matrices, and show that (X -E [X])/(\Var (X))1/2 is asymptotically normally distributed. In addition, we show that for several fixed arcs I1, ..., Im, the corresponding random variables are jointly normal in the large n limit.