A Virtual Element Method for the Steklov Eigenvalue Problem Allowing Small Edges

被引:0
|
作者
Felipe Lepe
David Mora
Gonzalo Rivera
Iván Velásquez
机构
[1] Universidad del Bío-Bío,Departamento de Matemática
[2] CI2MA,Departamento de Ciencias Exactas
[3] Universidad de Concepción,Departamento de Ciencias Básicas
[4] Universidad de Los Lagos,GIMNAP
[5] Universidad del Sinú-Elías Bechara Zainúm,Departamento de Matemática
[6] Universidad del Bío-Bío,undefined
来源
Journal of Scientific Computing | 2021年 / 88卷
关键词
Virtual element method; Steklov eigenvalue problem; Error estimates; Polygonal meshes; Small edges; 35Q35; 65N15; 65N25; 65N30; 76B15;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is to analyze the influence of small edges in the computation of the spectrum of the Steklov eigenvalue problem by a lowest order virtual element method. Under weaker assumptions on the polygonal meshes, which can permit arbitrarily small edges with respect to the element diameter, we show that the scheme provides a correct approximation of the spectrum and prove optimal error estimates for the eigenfunctions and a double order for the eigenvalues. Finally, we report some numerical tests supporting the theoretical results.
引用
收藏
相关论文
共 50 条
  • [41] Nonconforming finite element approximations of the Steklov eigenvalue problem and its lower bound approximations
    Qin Li
    Qun Lin
    Hehu Xie
    Applications of Mathematics, 2013, 58 : 129 - 151
  • [42] A two-grid discretization scheme for the Steklov eigenvalue problem
    Li Q.
    Yang Y.
    Journal of Applied Mathematics and Computing, 2011, 36 (1-2) : 129 - 139
  • [43] The effect of reduced integration in the Steklov eigenvalue problem
    Armentano, MG
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2004, 38 (01): : 27 - 36
  • [44] A posteriori error estimates for a Steklov eigenvalue problem
    Sun, LingLing
    Yang, Yidu
    ADVANCED MATERIALS AND PROCESSES II, PTS 1-3, 2012, 557-559 : 2081 - 2086
  • [45] A posteriori error estimates for the Steklov eigenvalue problem
    Armentano, Maria G.
    Padra, Claudio
    APPLIED NUMERICAL MATHEMATICS, 2008, 58 (05) : 593 - 601
  • [46] A noncoforming virtual element approximation for the Oseen eigenvalue problem
    Adak, Dibyendu
    Lepe, Felipe
    Rivera, Gonzalo
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2025,
  • [47] THE NONCONFORMING VIRTUAL ELEMENT METHOD FOR EIGENVALUE PROBLEMS
    Gardini, Francesca
    Manzini, Gianmarco
    Vacca, Giuseppe
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2019, 53 (03) : 749 - 774
  • [48] The interior penalty virtual element method for the two-dimensional biharmonic eigenvalue problem
    Meng, Jian
    Xu, Bing-Bing
    Su, Fang
    Qian, Xu
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2025, 436
  • [49] A C1 - C0 conforming virtual element discretization for the transmission eigenvalue problem
    Mora, David
    Velasquez, Ivan
    RESEARCH IN THE MATHEMATICAL SCIENCES, 2021, 8 (04)
  • [50] Virtual element method for second-order elliptic eigenvalue problems
    Gardini, Francesca
    Vacca, Giuseppe
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2018, 38 (04) : 2026 - 2054