A Virtual Element Method for the Steklov Eigenvalue Problem Allowing Small Edges

被引:0
|
作者
Felipe Lepe
David Mora
Gonzalo Rivera
Iván Velásquez
机构
[1] Universidad del Bío-Bío,Departamento de Matemática
[2] CI2MA,Departamento de Ciencias Exactas
[3] Universidad de Concepción,Departamento de Ciencias Básicas
[4] Universidad de Los Lagos,GIMNAP
[5] Universidad del Sinú-Elías Bechara Zainúm,Departamento de Matemática
[6] Universidad del Bío-Bío,undefined
来源
Journal of Scientific Computing | 2021年 / 88卷
关键词
Virtual element method; Steklov eigenvalue problem; Error estimates; Polygonal meshes; Small edges; 35Q35; 65N15; 65N25; 65N30; 76B15;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is to analyze the influence of small edges in the computation of the spectrum of the Steklov eigenvalue problem by a lowest order virtual element method. Under weaker assumptions on the polygonal meshes, which can permit arbitrarily small edges with respect to the element diameter, we show that the scheme provides a correct approximation of the spectrum and prove optimal error estimates for the eigenfunctions and a double order for the eigenvalues. Finally, we report some numerical tests supporting the theoretical results.
引用
收藏
相关论文
共 50 条
  • [31] A posteriori and superconvergence error analysis for finite element approximation of the Steklov eigenvalue problem
    Xiong, Chunguang
    Xie, Manting
    Luo, Fusheng
    Su, Hongling
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 144 : 90 - 99
  • [32] A virtual element approximation for the pseudostress formulation of the Stokes eigenvalue problem
    Lepe, Felipe
    Rivera, Gonzalo
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 379
  • [33] Convergence analysis of virtual element method for the electric interface model on polygonal meshes with small edges
    Kumar, Naresh
    Tushar, Jai
    Yuan, J. Y.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 159 : 254 - 266
  • [34] Eigenvalue comparisons in Steklov eigenvalue problem and some other eigenvalue estimates
    Zhao, Yan
    Wu, Chuanxi
    Mao, Jing
    Du, Feng
    REVISTA MATEMATICA COMPLUTENSE, 2020, 33 (02): : 389 - 414
  • [35] Eigenvalue comparisons in Steklov eigenvalue problem and some other eigenvalue estimates
    Yan Zhao
    Chuanxi Wu
    Jing Mao
    Feng Du
    Revista Matemática Complutense, 2020, 33 : 389 - 414
  • [36] A lowest-order virtual element method for the Helmholtz transmission eigenvalue problem
    Jian Meng
    Gang Wang
    Liquan Mei
    Calcolo, 2021, 58
  • [37] Mixed virtual element method for the Helmholtz transmission eigenvalue problem on polytopal meshes
    Meng, Jian
    Wang, Gang
    Mei, Liquan
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2023, 43 (03) : 1685 - 1717
  • [38] A lowest-order virtual element method for the Helmholtz transmission eigenvalue problem
    Meng, Jian
    Wang, Gang
    Mei, Liquan
    CALCOLO, 2021, 58 (01)
  • [39] Matlab Experiments on Extrapolation of The Nonconforming Crouzeix-Raviart Element for Steklov Eigenvalue Problem
    Bi, Hai
    Yang, Yi-Du
    ICMS2010: PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON MODELLING AND SIMULATION, VOL 2: MODELLING AND SIMULATION IN ENGINEERING, 2010, : 160 - 163
  • [40] Nonconforming finite element approximations of the Steklov eigenvalue problem and its lower bound approximations
    Li, Qin
    Lin, Qun
    Xie, Hehu
    APPLICATIONS OF MATHEMATICS, 2013, 58 (02) : 129 - 151