A Virtual Element Method for the Steklov Eigenvalue Problem Allowing Small Edges

被引:0
|
作者
Felipe Lepe
David Mora
Gonzalo Rivera
Iván Velásquez
机构
[1] Universidad del Bío-Bío,Departamento de Matemática
[2] CI2MA,Departamento de Ciencias Exactas
[3] Universidad de Concepción,Departamento de Ciencias Básicas
[4] Universidad de Los Lagos,GIMNAP
[5] Universidad del Sinú-Elías Bechara Zainúm,Departamento de Matemática
[6] Universidad del Bío-Bío,undefined
来源
Journal of Scientific Computing | 2021年 / 88卷
关键词
Virtual element method; Steklov eigenvalue problem; Error estimates; Polygonal meshes; Small edges; 35Q35; 65N15; 65N25; 65N30; 76B15;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is to analyze the influence of small edges in the computation of the spectrum of the Steklov eigenvalue problem by a lowest order virtual element method. Under weaker assumptions on the polygonal meshes, which can permit arbitrarily small edges with respect to the element diameter, we show that the scheme provides a correct approximation of the spectrum and prove optimal error estimates for the eigenfunctions and a double order for the eigenvalues. Finally, we report some numerical tests supporting the theoretical results.
引用
收藏
相关论文
共 50 条
  • [21] A multilevel Newton's method for the Steklov eigenvalue problem
    Yue, Meiling
    Xu, Fei
    Xie, Manting
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2022, 48 (03)
  • [22] A multilevel Newton’s method for the Steklov eigenvalue problem
    Meiling Yue
    Fei Xu
    Manting Xie
    Advances in Computational Mathematics, 2022, 48
  • [23] Virtual element method for the modified transmission eigenvalue problem in inverse scattering theory
    Meng, Jian
    APPLIED NUMERICAL MATHEMATICS, 2023, 192 : 356 - 372
  • [24] Nonconforming virtual element method for the Schrödinger eigenvalue problem
    Adak, Dibyendu
    Manzini, Gianmarco
    Vellojin, Jesus
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2025, 182 : 213 - 235
  • [25] GUARANTEED EIGENVALUE BOUNDS FOR THE STEKLOV EIGENVALUE PROBLEM
    You, Chun'guang
    Xie, Hehu
    Liu, Xuefeng
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (03) : 1395 - 1410
  • [26] Nonconforming virtual element discretization for the transmission eigenvalue problem
    Adak, Dibyendu
    Mora, David
    Velasquez, Ivan
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 152 : 250 - 267
  • [27] Virtual element method for the Helmholtz transmission eigenvalue problem of anisotropic media
    Meng, Jian
    Mei, Liquan
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2022, 32 (08) : 1493 - 1529
  • [28] A C0 virtual element method for the biharmonic eigenvalue problem
    Meng, Jian
    Mei, Liquan
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2021, 98 (09) : 1821 - 1833
  • [29] A DRBEM approximation of the Steklov eigenvalue problem
    Turk, Onder
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2021, 122 : 232 - 241
  • [30] The approximation from below by the Crouzeix-Raviart element for the Steklov eigenvalue problem
    Bi, H.
    Yang, Y. D.
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2015, 53 (03): : 24 - 32