Functional weak convergence of partial maxima processes

被引:0
作者
Danijel Krizmanić
机构
[1] University of Rijeka,
来源
Extremes | 2016年 / 19卷
关键词
Extremal index; Functional limit theorem; Regular variation; Skorohod ; topology; Strong mixing; Weak convergence; 60F17; 60G52; 60G70;
D O I
暂无
中图分类号
学科分类号
摘要
For a strictly stationary sequence of nonnegative regularly varying random variables (Xn) we study functional weak convergence of partial maxima processes Mn(t)=∨i=1⌊nt⌋Xi,t∈[0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$M_{n}(t) = \bigvee _{i=1}^{\lfloor nt \rfloor }X_{i},\,t \in [0,1]$\end{document} in the space D[0, 1] with the Skorohod J1 topology. Under the strong mixing condition, we give sufficient conditions for such convergence when clustering of large values do not occur. We apply this result to stochastic volatility processes. Further we give conditions under which the regular variation property is a necessary condition for J1 and M1 functional convergences in the case of weak dependence. We also prove that strong mixing implies the so-called Condition A(an)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {A}(a_{n})$\end{document} with the time component.
引用
收藏
页码:7 / 23
页数:16
相关论文
共 23 条
  • [1] Adler RJ(1978)Weak convergence results for extremal processes generated by dependent random variables Ann. Probab. 6 660-667
  • [2] Basrak B(2012)A functional limit theorem for partial sums of dependent random variables with infinite variance Ann. Probab. 40 2008-2033
  • [3] Krizmanić D(2009)Regularly varying multivariate time series Stochastic Process. Appl. 119 1055-1080
  • [4] Segers J(1965)On some limit theorems similar to arc–sin law Theory Probab. Appl. 10 323-331
  • [5] Basrak B(1995)Point process and partial sum convergence for weakly dependent random variables with infinite variance Ann. Probab. 23 879-917
  • [6] Segers J(1978)Functional limit theorems for dependent variables Ann. Probab. 6 829-846
  • [7] Breiman L(2014)Weak convergence of partial maxima processes in the M1 topology Extremes 17 447-465
  • [8] Davis RA(2014)On functional weak convergence for partial sum processes Electron. Commun. Probab. 19 1-12
  • [9] Hsing T(1964)On extreme order statistics Ann. Math. Statist. 35 1726-1737
  • [10] Durrett R(1974)On extreme values in stationary sequences. Z. Wahrscheinlichkeitstheorie und Verw Gebiete 28 289-303