Wellposedness and Decay Rates for the Cauchy Problem of the Moore–Gibson–Thompson Equation Arising in High Intensity Ultrasound

被引:0
作者
M. Pellicer
B. Said-Houari
机构
[1] Universitat de Girona,Dpt. d’Informàtica, Matemàtica Aplicada i Estadística (EPS)
[2] University of Sharjah,Department of Mathematics, College of Sciences
来源
Applied Mathematics & Optimization | 2019年 / 80卷
关键词
Moore–Gibson–Thompson equation; Decay rate; Fourier transform; Energy method; Eigenvalues expansion method; 35B37; 35L55; 74D05; 93D15; 93D20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the Moore–Gibson–Thompson equation in RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^N$$\end{document}, which is a third order in time equation that arises in viscous thermally relaxing fluids and also in viscoelastic materials (then under the name of standard linear viscoelastic model). First, we use some Lyapunov functionals in the Fourier space to show that, under certain assumptions on some parameters in the equation, a norm related to the solution decays with a rate (1+t)-N/4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1+t)^{-N/4}$$\end{document}. Since the decay of the previous norm does not give the decay rate of the solution itself then, in the second part of the paper, we show an explicit representation of the solution in the frequency domain by analyzing the eigenvalues of the Fourier image of the solution and writing the solution accordingly. We use this eigenvalues expansion method to give the decay rate of the solution (and also of its derivatives), which results in (1+t)1-N/4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1+t)^{1-N/4}$$\end{document} for N=1,2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N=1,2$$\end{document} and (1+t)1/2-N/4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1+t)^{1/2-N/4}$$\end{document} when N≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 3$$\end{document}.
引用
收藏
页码:447 / 478
页数:31
相关论文
共 34 条
[1]  
Alves MS(2013)Asymptotic behaviour for the vibrations modeled by the standard linear solid model with a thermal effect J. Math. Anal. Appl. 399 472-479
[2]  
Buriol C(2015)Chaotic behaviour of the solutions of the Moore–Gibson–Thompson equation App. Math. Inf. Sci. 9 1-6
[3]  
Ferreira MV(1992)On the equations of nonlinear acoustics J. Acoust. 5 321-359
[4]  
Muñoz Rivera JE(2010)Stabilization for the vibrations modeled by the standard linear model of viscoelasticity Proc. Indian Acad. Sci. (Math. Sci.) 120 495-506
[5]  
Sepúlveda M(2008)Decay property of regularity-loss type for dissipative Timoshenko system Math. Models Methods Appl. Sci. 18 647-667
[6]  
Vera O(2004)New decay estimates for linear damped wave equations and its application to nonlinear problem Math. Methods Appl. Sci. 27 865-889
[7]  
Conejero JA(2014)Second-sound phenomena in inviscid, thermally relaxing gases Discret. Contin. Dyn. Syst. Ser. B 19 2189-2205
[8]  
Lizama C(2011)Wellposedness and exponential decay rates for the Moore–Gibson–Thompson equation arising in high intensity ultrasound Control Cybern. 40 971-988
[9]  
Ródenas F(2012)Well-posedness and exponential decay of the energy in the nonlinear Jordan–Moore–Gibson–Thompson equation arising in high intensity ultrasound Math. Models Methods Appl. Sci. 22 1250035-7635
[10]  
Coulouvrat F(1971)Equations of nonlinear acoustics Sov. Phys. Acoust. 16 467-1929