Technologies for trapped-ion quantum information systemsProgress toward scalability with hybrid systems

被引:0
作者
Amira M. Eltony
Dorian Gangloff
Molu Shi
Alexei Bylinskii
Vladan Vuletić
Isaac L. Chuang
机构
[1] Massachusetts Institute of Technology,Research Laboratory of Electronics, Department of Physics, Center for Ultracold Atoms
来源
Quantum Information Processing | 2016年 / 15卷
关键词
Ion traps; Quantum computation; Quantum information; Trapped ions; Ion–photon interface; Graphene; Indium tin oxide; Cavity cooling; Optical trapping; Micromirror; Motional heating; CMOS ion trap; Hybrid trap; Scalable;
D O I
暂无
中图分类号
学科分类号
摘要
Scaling up from prototype systems to dense arrays of ions on chip, or vast networks of ions connected by photonic channels, will require developing entirely new technologies that combine miniaturized ion trapping systems with devices to capture, transmit, and detect light, while refining how ions are confined and controlled. Building a cohesive ion system from such diverse parts involves many challenges, including navigating materials incompatibilities and undesired coupling between elements. Here, we review our recent efforts to create scalable ion systems incorporating unconventional materials such as graphene and indium tin oxide, integrating devices like optical fibers and mirrors, and exploring alternative ion loading and trapping techniques.
引用
收藏
页码:5351 / 5383
页数:32
相关论文
共 30 条
  • [1] Technologies for trapped-ion quantum information systems
    Eltony, Amira M.
    Gangloff, Dorian
    Shi, Molu
    Bylinskii, Alexei
    Vuletic, Vladan
    Chuang, Isaac L.
    QUANTUM INFORMATION PROCESSING, 2016, 15 (12) : 5351 - 5383
  • [2] Recent experiments in trapped-ion quantum information processing at NIST
    Chiaverini, J.
    Barrett, M. D.
    Blakestad, R. B.
    Britton, J.
    Itano, W.
    Jost, J. D.
    Knill, E.
    Langer, C.
    Leibfried, D.
    Ozeri, R.
    Schaetz, T.
    Wineland, D. J.
    ICONO 2005: ULTRAFAST PHENOMENA AND PHYSICS OF SUPERINTENSE LASER FIELDS; QUANTUM AND ATOM OPTICS; ENGINEERING OF QUANTUM INFORMATION, 2006, 6256
  • [3] Integrated optics architecture for trapped-ion quantum information processing
    Kielpinski, D.
    Volin, C.
    Streed, E. W.
    Lenzini, F.
    Lobino, M.
    QUANTUM INFORMATION PROCESSING, 2016, 15 (12) : 5315 - 5338
  • [4] Integrated optics architecture for trapped-ion quantum information processing
    D. Kielpinski
    C. Volin
    E. W. Streed
    F. Lenzini
    M. Lobino
    Quantum Information Processing, 2016, 15 : 5315 - 5338
  • [5] A small trapped-ion quantum register
    Kielpinski, D
    JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2003, 5 (03) : R121 - R135
  • [6] Progress of quantum entanglement in a trapped-ion based quantum computer
    Yum, Dahyun
    Choi, Taeyoung
    CURRENT APPLIED PHYSICS, 2022, 41 : 163 - 177
  • [7] Entangling gates for trapped-ion quantum computation and quantum simulation
    Cai, Zhengyang
    Luan, Chun -Yang
    Ou, Lingfeng
    Tu, Hengchao
    Yin, Zihan
    Zhang, Jing -Ning
    Kim, Kihwan
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2023, 82 (09) : 882 - 900
  • [8] Nuclear spin qubits in a trapped-ion quantum computer
    Feng, M.
    Xu, Y. Y.
    Zhou, F.
    Suter, D.
    PHYSICAL REVIEW A, 2009, 79 (05):
  • [9] Backend compiler phases for trapped-ion quantum computers
    Schmale, Tobias
    Temesi, Bence
    Baishya, Alakesh
    Pulido-Mateo, Nicolas
    Krinner, Ludwig
    Dubielzig, Timko
    Ospelkaus, Christian
    Weimer, Hendrik
    Borcherding, Daniel
    2022 IEEE INTERNATIONAL CONFERENCE ON QUANTUM SOFTWARE (IEEE QSW 2022), 2022, : 32 - 37
  • [10] Towards fast and scalable trapped-ion quantum logic with integrated photonics
    Mehta, Karan K.
    Zhang, Chi
    Miller, Stefanie
    Home, Jonathan P.
    ADVANCES IN PHOTONICS OF QUANTUM COMPUTING, MEMORY, AND COMMUNICATION XII, 2019, 10933