Cycles in Partially Square Graphs

被引:0
作者
Ahmed Ainouche
Mekkia Kouider
机构
[1]  CEREGMIA,
[2] Universite des Antilles et de la Guyane,undefined
[3] BP 7209-97275 Schoelcher Cedex,undefined
[4] Martinique,undefined
[5] F W I,undefined
[6] France. e-mail: a.ainouche@martinique.univ-ag.fr,undefined
[7]  LRI,undefined
[8] URA 410 CNRS,undefined
[9] Bat 490,undefined
[10] Universite de Paris-Sud,undefined
[11] 91405 Orsay Cedex,undefined
[12] France e-mail: km@lri.lri.fr,undefined
来源
Graphs and Combinatorics | 2001年 / 17卷
关键词
Simple Graph; Stability Number; Undirected Simple Graph;
D O I
暂无
中图分类号
学科分类号
摘要
. In this work we consider finite undirected simple graphs. If G=(V,E) is a graph we denote by α(G) the stability number of G. For any vertex x let N[x] be the union of x and the neighborhood N(x). For each pair of vertices ab of G we associate the set J(a,b) as follows. J(a,b)={u∈N[a]∩N[b]∣N(u)⊆N[a]∪N[b]}. Given a graph G, its partially squareG* is the graph obtained by adding an edge uv for each pair u,v of vertices of G at distance 2 whenever J(u,v) is not empty. In the case G is a claw-free graph, G* is equal to G2.
引用
收藏
页码:1 / 9
页数:8
相关论文
共 50 条
  • [31] Graphs with a Small Number of Nonnegative Eigenvalues
    Miroslav Petrović
    Graphs and Combinatorics, 1999, 15 : 221 - 232
  • [32] Partitions of graphs into small and large sets
    Bojilov, Asen
    Caro, Yair
    Hansberg, Adriana
    Nenov, Nedyalko
    DISCRETE APPLIED MATHEMATICS, 2013, 161 (13-14) : 1912 - 1924
  • [33] Lovasz-Schrijver SDP-operator, near-perfect graphs and near-bipartite graphs
    Bianchi, S.
    Escalante, M.
    Nasini, G.
    Tuncel, L.
    MATHEMATICAL PROGRAMMING, 2017, 162 (1-2) : 201 - 223
  • [34] On a presentation of the automorphism group of a partially commutative metabelian group
    Timoshenko, E. I.
    MATHEMATICAL NOTES, 2015, 97 (1-2) : 275 - 283
  • [35] Stability Number and f-Factors in Graphs
    Mekkia Kouider
    Graphs and Combinatorics, 2014, 30 : 197 - 202
  • [36] On Family of Graphs with Minimum Number of Spanning Trees
    Zbigniew R. Bogdanowicz
    Graphs and Combinatorics, 2013, 29 : 1647 - 1652
  • [37] On (P5, diamond)-free graphs
    Arbib, C
    Mosca, R
    DISCRETE MATHEMATICS, 2002, 250 (1-3) : 1 - 22
  • [38] A copositive formulation for the stability number of infinite graphs
    Cristian Dobre
    Mirjam Dür
    Leonhard Frerick
    Frank Vallentin
    Mathematical Programming, 2016, 160 : 65 - 83
  • [39] Asymptotic behavior of the number of Eulerian orientations of graphs
    Isaev, M. I.
    MATHEMATICAL NOTES, 2013, 93 (5-6) : 816 - 829
  • [40] Asymptotic behavior of the number of Eulerian orientations of graphs
    M. I. Isaev
    Mathematical Notes, 2013, 93 : 816 - 829