Cycles in Partially Square Graphs

被引:0
作者
Ahmed Ainouche
Mekkia Kouider
机构
[1]  CEREGMIA,
[2] Universite des Antilles et de la Guyane,undefined
[3] BP 7209-97275 Schoelcher Cedex,undefined
[4] Martinique,undefined
[5] F W I,undefined
[6] France. e-mail: a.ainouche@martinique.univ-ag.fr,undefined
[7]  LRI,undefined
[8] URA 410 CNRS,undefined
[9] Bat 490,undefined
[10] Universite de Paris-Sud,undefined
[11] 91405 Orsay Cedex,undefined
[12] France e-mail: km@lri.lri.fr,undefined
来源
Graphs and Combinatorics | 2001年 / 17卷
关键词
Simple Graph; Stability Number; Undirected Simple Graph;
D O I
暂无
中图分类号
学科分类号
摘要
. In this work we consider finite undirected simple graphs. If G=(V,E) is a graph we denote by α(G) the stability number of G. For any vertex x let N[x] be the union of x and the neighborhood N(x). For each pair of vertices ab of G we associate the set J(a,b) as follows. J(a,b)={u∈N[a]∩N[b]∣N(u)⊆N[a]∪N[b]}. Given a graph G, its partially squareG* is the graph obtained by adding an edge uv for each pair u,v of vertices of G at distance 2 whenever J(u,v) is not empty. In the case G is a claw-free graph, G* is equal to G2.
引用
收藏
页码:1 / 9
页数:8
相关论文
共 50 条
  • [1] Cycles in partially square graphs
    Ainouche, A
    Kouider, M
    GRAPHS AND COMBINATORICS, 2001, 17 (01) : 1 - 9
  • [2] Longest Paths and Longest Cycles in Graphs with Large Degree Sums
    Ingo Schiermeyer
    Meike Tewes
    Graphs and Combinatorics, 2002, 18 : 633 - 643
  • [3] DUALIZABILITY OF GRAPHS
    Johansen, Sarah M.
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2010, 89 (03) : 377 - 392
  • [4] Trades and Graphs
    Elizabeth J. Billington
    D. G. Hoffman
    Graphs and Combinatorics, 2001, 17 : 39 - 54
  • [5] Some New Sufficient Conditions for Graphs to be (a, b, k)-Critical Graphs
    Zhou, Sizhong
    Xu, Zurun
    Zong, Minggang
    ARS COMBINATORIA, 2011, 102 : 11 - 20
  • [6] Optimal pebbling of graphs
    Muntz, Jessica
    Narayan, Sivaram
    Streib, Noah
    Van Ochten, Kelly
    DISCRETE MATHEMATICS, 2007, 307 (17-18) : 2315 - 2321
  • [7] On nonplanarity of cubic graphs
    Plachta L.P.
    Journal of Mathematical Sciences, 2012, 187 (5) : 545 - 549
  • [8] On the cubicity of certain graphs
    Chandran, LS
    Mannino, C
    Oriolo, G
    INFORMATION PROCESSING LETTERS, 2005, 94 (03) : 113 - 118
  • [9] On the critical ideals of graphs
    Corrales, Hugo
    Valencia, Carlos E.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (12) : 3870 - 3892
  • [10] Extremal graphs for the Randic index when minimum, maximum degrees and order of graphs are odd
    Divnic, Tomica
    Pavlovic, Ljiljana
    Liu, Bolian
    OPTIMIZATION, 2015, 64 (09) : 2021 - 2038