The conjunction problem for thin elastic and rigid inclusions in an elastic body

被引:0
作者
Puris V.A. [1 ]
机构
[1] Lavrent’ev Institute of Hydrodynamics, pr. Akad. Lavrent’eva 15, Novosibirsk
基金
俄罗斯科学基金会;
关键词
Bernoulli–Euler beam; conjunction conditions; crack; nonlinear boundary conditions; thin rigid inclusion;
D O I
10.1134/S1990478917030152
中图分类号
学科分类号
摘要
Under consideration is the conjunction problem for a thin elastic and a thin rigid inclusions that are in contact at one point and placed in an elastic body. Depending on what kind of conjunction conditions are set at the contact point of inclusions, we consider the two cases: the case of no fracture, where, as the conjunction conditions, we take the matching of displacements at the contact point and preservation of the angle between the inclusions, and the case with a fracture in which only the matching of displacements is assumed. At the point of conjunction, we obtain the boundary conditions for the differential formulation of the problem. On the positive face of the rigid inclusion, there is delamination. On the crack faces, some nonlinear boundary conditions of the type of inequalities are set, that prevent mutual penetration of the faces. The existence and uniqueness theorems for the solution of the equilibrium problem are proved in both cases. © 2017, Pleiades Publishing, Ltd.
引用
收藏
页码:444 / 452
页数:8
相关论文
共 50 条
  • [31] On Timoshenko thin elastic inclusions inside elastic bodies
    Khludnev, A. M.
    Leugering, G. R.
    MATHEMATICS AND MECHANICS OF SOLIDS, 2015, 20 (05) : 495 - 511
  • [32] Equilibrium problem for elastic plate with thin rigid inclusion crossing an external boundary
    Khludnev, Alexander
    Fankina, Irina
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (03):
  • [33] Equilibrium problem for elastic plate with thin rigid inclusion crossing an external boundary
    Alexander Khludnev
    Irina Fankina
    Zeitschrift für angewandte Mathematik und Physik, 2021, 72
  • [34] CONTACT PROBLEMS FOR ELASTIC BODIES WITH RIGID INCLUSIONS
    Khludnev, Alexander
    QUARTERLY OF APPLIED MATHEMATICS, 2012, 70 (02) : 269 - 284
  • [35] Crack on the boundary of a thin elastic inclusion inside an elastic body
    Khludnev, A.
    Negri, M.
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2012, 92 (05): : 341 - 354
  • [36] On thin inclusions in elastic bodies with defects
    Khludnev, A. M.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (02):
  • [37] On thin inclusions in elastic bodies with defects
    A. M. Khludnev
    Zeitschrift für angewandte Mathematik und Physik, 2019, 70
  • [38] Optimal control of a thin rigid inclusion intersecting the boundary of an elastic body
    Khludnev, A. M.
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 2015, 79 (05): : 493 - 499
  • [39] On Equilibrium of the Elastic Bodies with Cracks Crossing Thin Inclusions
    Nikolaeva N.A.
    Journal of Applied and Industrial Mathematics, 2019, 13 (04) : 685 - 697
  • [40] SINGULAR INVARIANT INTEGRALS FOR ELASTIC BODY WITH DELAMINATED THIN ELASTIC INCLUSION
    Khludnev, A. M.
    QUARTERLY OF APPLIED MATHEMATICS, 2014, 72 (04) : 719 - 730