Feature Engineering Techniques and Spatio-Temporal Data Processing

被引:0
|
作者
Forke, Chris-Marian [1 ]
Tropmann-Frick, Marina [1 ]
机构
[1] Forke, Chris-Marian
[2] Tropmann-Frick, Marina
来源
关键词
Data handling - Learning algorithms;
D O I
10.1007/s13222-021-00391-x
中图分类号
学科分类号
摘要
More and more applications nowadays use spatio-temporal data for different purposes. In order to be processed and used efficiently, this unique type of data requires special handling. This paper summarizes methods and approaches for feature selection of spatio-temporal data and machine learning algorithms for spatio-temporal data engineering. Furthermore, it highlights relevant work in specific domains. The range of possible approaches for data processing is quite wide. However, in order to use these approaches with the spatio-temporal data in a meaningful and practical way, individual data processing steps need to be adapted. One of the most important steps is feature engineering.
引用
收藏
页码:237 / 244
页数:7
相关论文
共 50 条
  • [31] On spatio-temporal blockchain query processing
    Qu, Qiang
    Nurgaliev, Ildar
    Muzammal, Muhammad
    Jensen, Christian S.
    Fan, Jianping
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2019, 98 : 208 - 218
  • [32] STORM: Spatio-Temporal Online Reasoning and Management of Large Spatio-Temporal Data
    Christensen, Robert
    Wang, Lu
    Li, Feifei
    Yi, Ke
    Tang, Jun
    Villa, Natalee
    SIGMOD'15: PROCEEDINGS OF THE 2015 ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2015, : 1111 - 1116
  • [33] Spatio-Temporal Analysis of Greenhouse Gas Data Via Clustering Techniques
    Cuzzocrea, Alfredo
    Gaber, Mohamed Medhat
    Lattimer, Staci
    PROCEEDINGS OF THE 2015 IEEE 19TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN (CSCWD), 2015, : 478 - 483
  • [34] Spatio-temporal techniques for user identification by means of GPS mobility data
    Luca Rossi
    James Walker
    Mirco Musolesi
    EPJ Data Science, 4
  • [35] Housing price variations using spatio-temporal data mining techniques
    Soltani, Ali
    Pettit, Christopher James
    Heydari, Mohammad
    Aghaei, Fatemeh
    JOURNAL OF HOUSING AND THE BUILT ENVIRONMENT, 2021, 36 (03) : 1199 - 1227
  • [36] Housing price variations using spatio-temporal data mining techniques
    Ali Soltani
    Christopher James Pettit
    Mohammad Heydari
    Fatemeh Aghaei
    Journal of Housing and the Built Environment, 2021, 36 : 1199 - 1227
  • [37] Spatio-temporal techniques for user identification by means of GPS mobility data
    Rossi, Luca
    Walker, James
    Musolesi, Mirco
    EPJ DATA SCIENCE, 2015, 4 (01) : 1 - 16
  • [38] Spatio-temporal data fusion techniques for modeling digital twin City
    Li, Yuejin
    Chen, Shengpeng
    Hwang, Kai
    Ji, Xiaoqiang
    Lei, Zhen
    Zhu, Yi
    Ye, Feng
    Liu, Mengjun
    GEO-SPATIAL INFORMATION SCIENCE, 2024,
  • [39] An approach to evaluating motion pattern detection techniques in spatio-temporal data
    Laube, Patrick
    Purves, Ross S.
    COMPUTERS ENVIRONMENT AND URBAN SYSTEMS, 2006, 30 (03) : 347 - 374
  • [40] Visualization strategies and techniques for high-dimensional spatio-temporal data
    Schmidt, B
    Streit, U
    Uhlenkuken, C
    GEOGRAPHICAL INFORMATION '97: FROM RESEARCH TO APPLICATION THROUGH COOPERATION, VOLS 1 AND 2, 1997, : 248 - 253