Lyapunov-type inequalities for mixed non-linear forced differential equations within conformable derivatives

被引:0
|
作者
Thabet Abdeljawad
Ravi P. Agarwal
Jehad Alzabut
Fahd Jarad
Abdullah Özbekler
机构
[1] Prince Sultan University,Department of Mathematics and General Sciences
[2] Texas A&M University–Kingsville,Department of Mathematics
[3] Çankaya University,Department of Mathematics
[4] Atilim University,Department of Mathematics
来源
Journal of Inequalities and Applications | / 2018卷
关键词
Lyapunov inequality; Hartman inequality; Conformable derivative; Green’s function; Boundary value problem; Mixed non-linearities; 34A08; 26D15;
D O I
暂无
中图分类号
学科分类号
摘要
We state and prove new generalized Lyapunov-type and Hartman-type inequalities for a conformable boundary value problem of order α∈(1,2]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha \in (1,2]$\end{document} with mixed non-linearities of the form (Tαax)(t)+r1(t)|x(t)|η−1x(t)+r2(t)|x(t)|δ−1x(t)=g(t),t∈(a,b),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \bigl(\mathbf{T}_{\alpha }^{a} x\bigr) (t)+r_{1}(t) \bigl\vert x(t) \bigr\vert ^{\eta -1}x(t)+r_{2}(t)\bigl\vert x(t) \bigr\vert ^{ \delta -1}x(t)=g(t), \quad t\in (a,b), $$\end{document} satisfying the Dirichlet boundary conditions x(a)=x(b)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x(a)=x(b)=0$\end{document}, where r1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$r_{1}$\end{document}, r2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$r_{2}$\end{document}, and g are real-valued integrable functions, and the non-linearities satisfy the conditions 0<η<1<δ<2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0<\eta <1<\delta <2$\end{document}. Moreover, Lyapunov-type and Hartman-type inequalities are obtained when the conformable derivative Tαa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbf{T}_{\alpha }^{a}$\end{document} is replaced by a sequential conformable derivative Tαa∘Tαa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbf{T}_{\alpha }^{a} \circ \mathbf{T}_{\alpha }^{a}$\end{document}, α∈(1/2,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha \in (1/2,1]$\end{document}. The potential functions r1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$r_{1}$\end{document}, r2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$r_{2}$\end{document} as well as the forcing term g require no sign restrictions. The obtained inequalities generalize some existing results in the literature.
引用
收藏
相关论文
共 50 条
  • [21] Lyapunov-type inequalities for higher-order Caputo fractional differential equations with general two-point boundary conditions
    Srivastava, Satyam narayan
    Pati, Smita
    Graef, John r.
    Domoshnitsky, Alexander
    Padhi, Seshadev
    CUBO-A MATHEMATICAL JOURNAL, 2024, 26 (02): : 259 - 277
  • [22] LYAPUNOV-TYPE INEQUALITIES FOR PLANAR LINEAR DYNAMIC HAMILTONIAN SYSTEMS
    Bohner, Martin
    Zafer, Agacik
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2013, 7 (01) : 129 - 142
  • [23] A Lyapunov-Type Inequality for Partial Differential Equation Involving the Mixed Caputo Derivative
    Wang, Jie
    Zhang, Shuqin
    MATHEMATICS, 2020, 8 (01)
  • [24] LYAPUNOV-TYPE INEQUALITY FOR CERTAIN HALF-LINEAR LOCAL FRACTIONAL ORDINARY DIFFERENTIAL EQUATIONS
    Liu, Haidong
    Wang, Jingjing
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2024, 32 (04)
  • [25] Lyapunov's type inequalities for hybrid fractional differential equations
    Sitho, Surang
    Ntouyas, Sotiris K.
    Yukunthorn, Weera
    Tariboon, Jessada
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016, : 1 - 13
  • [26] Lyapunov-type inequalities for differential equation with Caputo–Hadamard fractional derivative under multipoint boundary conditions
    Youyu Wang
    Yuhan Wu
    Zheng Cao
    Journal of Inequalities and Applications, 2021
  • [27] Lyapunov type inequalities for second-order forced dynamic equations with mixed nonlinearities on time scales
    Ravi P. Agarwal
    Erbil Çetin
    Abdullah Özbekler
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2017, 111 : 231 - 246
  • [28] Lyapunov type inequalities for second-order forced dynamic equations with mixed nonlinearities on time scales
    Agarwal, Ravi P.
    Cetin, Erbil
    Ozbekler, Abdullah
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2017, 111 (01) : 231 - 246
  • [29] Lyapunov-type inequalities for Hadamard fractional differential equation under Sturm-Liouville boundary conditions
    Wang, Youyu
    Zhang, Lu
    Zhang, Yang
    AIMS MATHEMATICS, 2021, 6 (03): : 2981 - 2995
  • [30] LYAPUNOV-TYPE INEQUALITIES FOR A NONLINEAR SEQUENTIAL FRACTIONAL BVP IN THE FRAME OF GENERALIZED HILFER DERIVATIVES
    Nguyen Minh Dien
    Nieto, Juan J.
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2022, 25 (03): : 851 - 852