Characterization of novel thermoresponsive poly(butylene adipate-co-terephthalate)/poly(N-isopropylacrylamide) electrospun fibers

被引:0
|
作者
Breno Augusto Tabosa Thome da Silva
Liege Aguiar Pascoalino
Ricardo Luiz de Souza
Edvani Curti Muniz
Priscila Schroeder Curti
机构
[1] Federal Technological University of Parana,Materials Science and Engineering
[2] Federal Technological University of Parana,Chemistry Academic Department
来源
Polymer Bulletin | 2020年 / 77卷
关键词
Electrospinning; Poly(butylene adipate-co-terephthalate); Poly(; -isopropylacrylamide); Fibers; Wettability;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, electrospun fibers of poly(butylene adipate-co-terephthalate) (PBAT) and poly(N-isopropylacrylamide) (PNIPAAm) blends, PBAT/PNIPAAm, with different mass ratios, were obtained. For characterization of their morphological, structural, thermal and wettability properties, scanning electron microscopy (SEM), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), thermogravimetry (TG), differential scanning calorimetry (DSC) and drop water contact angle (DWCA) measurements were carried out. The optimum conditions determined for electrospinning were: voltage of 25 kV, flow rate of 1.3 mL·h−1 and working distance of 15 cm. The most important result was achieving PBAT/PNIPAAm electrospun fibers with a thermoresponsive behavior and a sudden response to temperature at PNIPAAm’s LCST (lower critical solution temperature). From SEM analysis, the higher the content of PNIPAAm in the blend, the higher the average diameter of the electrospun fibers was; also, the higher content of PNIPAAm in the blend allowed the fibers to be rounded with no presence of beads. From ATR-FTIR analysis, no formation of strong intermolecular interactions, such as hydrogen bonding, between the PBAT and PNIPAAm chains was observed. From TG and DSC analyses, the thermal stability of the PBAT/PNIPAAm fibers remained unchanged in respect to the electrospinning. DWCA measurements for PBAT/PNIPAAm 70/30 and 50/50 fibers, in response to temperature, indicated a gap of 50° to 60° at PNIPAAm’s LCST, evidencing their high thermosensitivity. With these results, PBAT/PNIPAAm electrospun fibers with 30% or more in mass ratio of PNIPAAm might find a potential application for the cell adhesion/detachment field.
引用
收藏
页码:1157 / 1176
页数:19
相关论文
共 50 条
  • [31] Synthesis and characterization of poly(butylene adipate-co-terephthalate) catalyzed by rare earth Stearates
    Zhu Kui
    Zhu Wei-Pu
    Gu Yan-Bo
    Shen Zhi-Quan
    Chen Wei
    Zhu Gui-Xiang
    CHINESE JOURNAL OF CHEMISTRY, 2007, 25 (10) : 1581 - 1583
  • [32] Nonisothermal Crystallization Kinetics of Poly(butylene adipate-co-terephthalate) Copolyester
    Wang Xiaohui
    Shi Jun
    Chen Ying
    Fu Zhifeng
    Shi Yan
    CHINA PETROLEUM PROCESSING & PETROCHEMICAL TECHNOLOGY, 2012, 14 (01) : 74 - 79
  • [33] Characterization of a poly(butylene adipate-co-terephthalate)-hydrolyzing lipase from Pelosinus fermentans
    Biundo, Antonino
    Hromic, Altijana
    Pavkov-Keller, Tea
    Gruber, Karl
    Quartinello, Felice
    Haernvall, Karolina
    Perz, Veronika
    Arrell, Miriam S.
    Zinn, Manfred
    Ribitsch, Doris
    Guebitz, Georg M.
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2016, 100 (04) : 1753 - 1764
  • [34] Electrospun poly(lactic acid) (PLA)/poly(butylene adipate-co-terephthalate) (PBAT) nanofibers for the controlled release of cilostazol
    Antunes, Lidiane Rodrigues
    Breitenbach, Gabriela Lauer
    Galdioli Pella, Michelly Cristina
    Caetano, Josiane
    Dragunski, Douglas Cardoso
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2021, 182 : 333 - 342
  • [35] Preparation and Antimicrobial Characterization of Poly(butylene adipate-co-terephthalate)/Kaolin Clay Biocomposites
    Venkatesan, Raja
    Alagumalai, Krishnapandi
    Kim, Seong-Cheol
    POLYMERS, 2023, 15 (07)
  • [36] Rheology and Physical Characterization of Graphene Nanoplatelet/ Poly (butylene adipate-co-terephthalate) Nanocomposites
    Kashi, Siena
    Gupta, Rahul K.
    Kao, Nhol
    Bhattacharya, Sati N.
    PROCEEDINGS OF PPS-32: THE 32ND INTERNATIONAL CONFERENCE OF THE POLYMER PROCESSING SOCIETY, 2017, 1914
  • [37] Characterization of a poly(butylene adipate-co-terephthalate)-hydrolyzing lipase from Pelosinus fermentans
    Antonino Biundo
    Altijana Hromic
    Tea Pavkov-Keller
    Karl Gruber
    Felice Quartinello
    Karolina Haernvall
    Veronika Perz
    Miriam S. Arrell
    Manfred Zinn
    Doris Ribitsch
    Georg M. Guebitz
    Applied Microbiology and Biotechnology, 2016, 100 : 1753 - 1764
  • [38] The application of poly(dimethyldiallylammonium chloride) in poly(butylene adipate-co-terephthalate)/starch composites
    Yan, Xin
    Zhou, Yuying
    Liu, Chen
    Chen, Yujian
    Wu, Hao
    Wang, Hu
    Zhang, He-xin
    Yang, Jian-ming
    Yoon, Keun-Byoung
    JOURNAL OF APPLIED POLYMER SCIENCE, 2024, 141 (38)
  • [39] Preparation and characterization of acetylated maltodextrin and its blend with poly(butylene adipate-co-terephthalate)
    Wu, Dandan
    Tan, Ying
    Han, Lijing
    Zhang, Huiliang
    Dong, Lisong
    CARBOHYDRATE POLYMERS, 2018, 181 : 701 - 709
  • [40] Processing and Characterization of Poly (butylene adipate-co-terephthalate) / Wollastonite Biocomposites for Medical Applications
    Bheemaneni, Girija
    Saravana, Savitha
    Kandaswamy, Ravichandran
    MATERIALS TODAY-PROCEEDINGS, 2018, 5 (01) : 1807 - 1816