On EA-equivalence of certain permutations to power mappings

被引:0
作者
Yongqiang Li
Mingsheng Wang
机构
[1] Institute of Software,The State Key Laboratory of Information Security
[2] Chinese Academy of Sciences,undefined
[3] Graduate School of Chinese Academy of Sciences,undefined
来源
Designs, Codes and Cryptography | 2011年 / 58卷
关键词
AB function; APN function; EA-equivalence; CCZ-equivalence; Permutation polynomial; S-box; 06E30; 11T06; 94A60;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we investigate the existence of permutation polynomials of the form xd + L(x) on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb{F}_{2^n}}}$$\end{document} , where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{L(x)\in\mathbb{F}_{2^n}[x]}}$$\end{document} is a linearized polynomial. It is shown that for some special d with gcd(d, 2n−1) > 1, xd + L(x) is nerve a permutation on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb{F}_{2^n}}}$$\end{document} for any linearized polynomial \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{L(x)\in\mathbb{F}_{2^n}[x]}}$$\end{document} . For the Gold functions \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{x^{2^i+1}}}$$\end{document} , it is shown that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{x^{2^i+1}+L(x)}}$$\end{document} is a permutation on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb{F}_{2^n}}}$$\end{document} if and only if n is odd and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{L(x)=\alpha^{2^i}x+\alpha x^{2^i}}}$$\end{document} for some \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\alpha\in\mathbb{F}_{2^n}^{*}}}$$\end{document} . We also disprove a conjecture in (Macchetti Addendum to on the generalized linear equivalence of functions over finite fields. Cryptology ePrint Archive, Report2004/347, 2004) in a very simple way. At last some interesting results concerning permutation polynomials of the form x−1 + L(x) are given.
引用
收藏
页码:259 / 269
页数:10
相关论文
共 18 条
[1]  
Biham E.(1991)Defferential cryptanalysis of DES-like cryptosystems J. Cryptol. 4 3-72
[2]  
Shamir A.(2006)On almost perfect nonlinear mappings over IEEE Trans. Inform. Theory 52 4160-4170
[3]  
Berger T.(2006)New classes of almost bent and almost perfect nonlinear polynomials IEEE Trans. Inform. Theory IT-52 1141-1152
[4]  
Canteaut A.(1998)Codes, bent functions and permutations sutiable for DES-like cryptosystems Des. Codes Cryptogr. 15 125-156
[5]  
Charpin P.(2006)A new APN function which is not equivalent to a power mapping IEEE Trans. Inform. Theory. IT-52 744-747
[6]  
Laigle-Chapuy Y.(2008)Bundels, presemifields and nonlinear functions Des. Codes Cryptogr. 49 79-94
[7]  
Budaghyan L.(2006)Affinity of permutations of Discret. Appl. Math. 154 313-325
[8]  
Carlet C.(undefined)undefined undefined undefined undefined-undefined
[9]  
Pott A.(undefined)undefined undefined undefined undefined-undefined
[10]  
Carlet C.(undefined)undefined undefined undefined undefined-undefined