Radial Limits of Mappings of Bounded and Finite Distortion

被引:0
作者
Tuomo Äkkinen
机构
[1] University of Jyväskylä,Department of Mathematics and Statistics
来源
The Journal of Geometric Analysis | 2014年 / 24卷
关键词
Radial limits; Mappings of finite distortion; Quasiregular; 30C65;
D O I
暂无
中图分类号
学科分类号
摘要
We give sufficient conditions for mappings defined on the unit ball of ℝn to have radial limits almost everywhere. In particular, we show that if f:B(0,1)→ℝn is a mapping with exponentially integrable distortion satisfying the growth condition \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\int_{B(0,r)}J_f(x)\,dx\leq c(1-r)^{-a} $$\end{document} for some a∈[0,n−1), then [inline-graphic not available: see fulltext]. Here the set E(f) consists of those points in ∂B(0,1) where f does not have radial limits. We also give an example which shows the difference between the classes of mappings of bounded distortion and certain integrable distortion in terms of radial limits.
引用
收藏
页码:1298 / 1322
页数:24
相关论文
共 18 条
[1]  
Gehring F.W.(1962)Rings and quasiconformal mappings in space Trans. Am. Math. Soc. 103 353-393
[2]  
Iwaniec T.(2001)Mappings of finite distortion: monotonicity and continuity Invent. Math. 144 507-531
[3]  
Koskela P.(2002)Failure of the condition Ann. Acad. Sci. Fenn. Math. 27 141-150
[4]  
Onninen J.(2001) below Arch. Ration. Mech. Anal. 160 135-151
[5]  
Kauhanen J.(1996)Mappings of finite distortion: discreteness and openness Trans. Am. Math. Soc. 348 755-766
[6]  
Kauhanen J.(2008)Regularity theory and traces of Math. Proc. Camb. Philos. Soc. 144 197-205
[7]  
Koskela P.(2009)-harmonic functions J. Geom. Anal. 19 708-718
[8]  
Malý J.(1999)Homeomorphisms of finite distortion: discrete length of radial images Math. Scand. 85 49-70
[9]  
Koskela P.(2008)Boundary limits for bounded quasiregular mappings Am. J. Math. 130 269-289
[10]  
Manfredi J.J.(undefined)Locally injective automorphic mappings in ℝ undefined undefined undefined-undefined