Wide-dynamic-range kinetic investigations of deep proton tunnelling in proteins

被引:0
|
作者
Salna, Bridget [1 ,2 ]
Benabbas, Abdelkrim [1 ,2 ]
Sage, J. Timothy [1 ,2 ]
van Thor, Jasper [3 ]
Champion, Paul M. [1 ,2 ]
机构
[1] Northeastern Univ, Dept Phys, Boston, MA 02115 USA
[2] Northeastern Univ, Ctr Interdisciplinary Res Complex Syst, Boston, MA 02115 USA
[3] Imperial Coll London, South Kensington Campus, Div Mol Biosci, London SW7 2AZ, England
基金
美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
GREEN FLUORESCENT PROTEIN; CYTOCHROME-C-OXIDASE; COUPLED ELECTRON-TRANSFER; ENZYME CATALYSIS; TRANSFER PATHWAYS; REACTION CENTERS; STATE; SPECTROSCOPY; TRANSPORT; SYSTEMS;
D O I
10.1038/NCHEM.2527
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Directional proton transport along 'wires' that feed biochemical reactions in proteins is poorly understood. Amino-acid residues with high pK(a) are seldom considered as active transport elements in such wires because of their large classical barrier for proton dissociation. Here, we use the light-triggered proton wire of the green fluorescent protein to study its ground-electronic-state proton-transport kinetics, revealing a large temperature-dependent kinetic isotope effect. We show that 'deep' proton tunnelling between hydrogen-bonded oxygen atoms with a typical donor-acceptor distance of 2.7-2.8 angstrom fully accounts for the rates at all temperatures, including the unexpectedly large value (2.5 x 10(9) s(-1)) found at room temperature. The rate-limiting step in green fluorescent protein is assigned to tunnelling of the ionization-resistant serine hydroxyl proton. This suggests how high-pK(a) residues within a proton wire can act as a 'tunnel diode' to kinetically trap protons and control the direction of proton flow.
引用
收藏
页码:874 / 880
页数:7
相关论文
共 50 条
  • [11] A WIDE-DYNAMIC-RANGE OPTICAL RECEIVER FOR BIOTELEMETRY SYSTEM
    KARITA, N
    KAWAHITO, S
    ISHIDA, M
    NAGAOKA, S
    USUI, S
    NAKAMURA, T
    IEICE TRANSACTIONS ON COMMUNICATIONS ELECTRONICS INFORMATION AND SYSTEMS, 1991, 74 (05): : 1343 - 1344
  • [12] Smart Reset Control for Wide-Dynamic-Range LWIR FPAs
    Woo, D. H.
    Nam, I. K.
    Lee, H. C.
    IEEE SENSORS JOURNAL, 2011, 11 (01) : 131 - 136
  • [13] High-sensitivity and wide-dynamic-range range finder and its applications
    Oike, Y
    Ikeda, M
    Asada, K
    MULTIMEDIA, IMAGE PROCESSING AND SOFT COMPUTING: TRENDS, PRINCIPLES AND APPLICATIONS, 2002, 13 : 417 - 422
  • [14] WIDE-BAND AND WIDE-DYNAMIC-RANGE RECORDING AND REPRODUCTION OF DIGITAL AUDIO
    KOMAMURA, M
    JOURNAL OF THE AUDIO ENGINEERING SOCIETY, 1995, 43 (1-2): : 29 - 39
  • [15] Integration Design of Wide-Dynamic-Range MEMS Magnetometer and Oscillator
    Song, Chao-Hung
    Wen, Kuei-Ann
    2018 IEEE INTERNATIONAL CONFERENCE ON SEMICONDUCTOR ELECTRONICS (ICSE 2018), 2018, : 17 - 20
  • [16] INTEGRABLE WIDE-DYNAMIC-RANGE NEGATIVE-RESISTANCE CIRCUITS
    SURAKAMPONTORN, W
    ELECTRONICS LETTERS, 1985, 21 (11) : 506 - 508
  • [17] Wide-dynamic-range "neutron bang time" detector on OMEGA
    Stoeckl, C
    Glebov, VY
    Zuegel, JD
    Meyerhofer, DD
    Lerche, RA
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2002, 73 (11): : 3796 - 3800
  • [18] Wide-band and wide-dynamic-range recording and reproduction of digital audio
    Komamura, Mitsuya
    AES: Journal of the Audio Engineering Society, 1995, 43 (1-2): : 29 - 39
  • [19] A MOSFET-Based Wide-Dynamic-Range Translinear Element
    Fernandez, Daniel
    Madrenas, Jordi
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2008, 55 (11) : 1124 - 1128
  • [20] Efficient lithium niobate waveguide for wide-dynamic-range wavelength conversion
    Kikuchi, Kiyofumi
    Kurimura, Sunao
    Kou, Rai
    Terasaki, Akihiro
    Nakajima, Hirochika
    Kondou, Katsutoshi
    Ichikawa, Junichiro
    2010 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO) AND QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE (QELS), 2010,