Multi-View CNN Feature Aggregation with ELM Auto-Encoder for 3D Shape Recognition

被引:0
|
作者
Zhi-Xin Yang
Lulu Tang
Kun Zhang
Pak Kin Wong
机构
[1] University of Macau,Department of Electromechanical Engineering, Faculty of Science and Technology
来源
Cognitive Computation | 2018年 / 10卷
关键词
ELM auto-encoder; Convolutional neural networks; 3D shape recognition; Multi-view feature aggregation;
D O I
暂无
中图分类号
学科分类号
摘要
Fast and accurate detection of 3D shapes is a fundamental task of robotic systems for intelligent tracking and automatic control. View-based 3D shape recognition has attracted increasing attention because human perceptions of 3D objects mainly rely on multiple 2D observations from different viewpoints. However, most existing multi-view-based cognitive computation methods use straightforward pairwise comparisons among the projected images then follow with weak aggregation mechanism, which results in heavy computation cost and low recognition accuracy. To address such problems, a novel network structure combining multi-view convolutional neural networks (M-CNNs), extreme learning machine auto-encoder (ELM-AE), and ELM classifer, named as MCEA, is proposed for comprehensive feature learning, effective feature aggregation, and efficient classification of 3D shapes. Such novel framework exploits the advantages of deep CNN architecture with the robust ELM-AE feature representation, as well as the fast ELM classifier for 3D model recognition. Compared with the existing set-to-set image comparison methods, the proposed shape-to-shape matching strategy could convert each high informative 3D model into a single compact feature descriptor via cognitive computation. Moreover, the proposed method runs much faster and obtains a good balance between classification accuracy and computational efficiency. Experimental results on the benchmarking Princeton ModelNet, ShapeNet Core 55, and PSB datasets show that the proposed framework achieves higher classification and retrieval accuracy in much shorter time than the state-of-the-art methods.
引用
收藏
页码:908 / 921
页数:13
相关论文
共 32 条
  • [1] Multi-View CNN Feature Aggregation with ELM Auto-Encoder for 3D Shape Recognition
    Yang, Zhi-Xin
    Tang, Lulu
    Zhang, Kun
    Wong, Pak Kin
    COGNITIVE COMPUTATION, 2018, 10 (06) : 908 - 921
  • [2] MVPN: Multi-View Prototype Network for 3D Shape Recognition
    Wu, Zizhao
    Yang, Ping
    Wang, Yigang
    IEEE ACCESS, 2019, 7 : 130363 - 130372
  • [3] Multi-View 3D Shape Recognition via Correspondence-Aware Deep Learning
    Xu, Yong
    Zheng, Chaoda
    Xu, Ruotao
    Quan, Yuhui
    Ling, Haibin
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 5299 - 5312
  • [4] Multi-Scale Multi-View Deep Feature Aggregation for Food Recognition
    Jiang, Shuqiang
    Min, Weiqing
    Liu, Linhu
    Luo, Zhengdong
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 265 - 276
  • [5] Multi-view convolutional vision transformer for 3D object recognition
    Li, Jie
    Liu, Zhao
    Li, Li
    Lin, Junqin
    Yao, Jian
    Tu, Jingmin
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2023, 95
  • [6] MULTI-VIEW GAIT RECOGNITION USING 3D CONVOLUTIONAL NEURAL NETWORKS
    Wolf, Thomas
    Babaee, Mohammadreza
    Rigoll, Gerhard
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 4165 - 4169
  • [7] Review of multi-view 3D object recognition methods based on deep learning
    Qi, Shaohua
    Ning, Xin
    Yang, Guowei
    Zhang, Liping
    Long, Peng
    Cai, Weiwei
    Li, Weijun
    DISPLAYS, 2021, 69
  • [8] iMVS: Integrating multi-view information on multiple scales for 3D object recognition ☆
    Jiang, Jiaqin
    Liu, Zhao
    Li, Jie
    Tu, Jingmin
    Li, Li
    Yao, Jian
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2024, 100
  • [9] Group-pair deep feature learning for multi-view 3d model retrieval
    Chen, Xiuxiu
    Liu, Li
    Zhang, Long
    Zhang, Huaxiang
    Meng, Lili
    Liu, Dongmei
    APPLIED INTELLIGENCE, 2022, 52 (02) : 2013 - 2022
  • [10] Self-supervised Multi-view Learning via Auto-encoding 3D Transformations
    Gao, Xiang
    Hu, Wei
    Qi, Guo-Jun
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2024, 20 (01)