On the nonexistence of Liouvillian first integrals for generalized Liénard polynomial differential systems

被引:0
作者
Guillaume Chèze
Thomas Cluzeau
机构
[1] Université Paul Sabatier Toulouse 3,Institut de Mathématiques de Toulouse
[2] CNRS UMR 5219,undefined
[3] Université de Limoges,undefined
[4] CNRS,undefined
[5] XLIM UMR 7252,undefined
[6] DMI,undefined
来源
Journal of Nonlinear Mathematical Physics | 2013年 / 20卷
关键词
Polynomial vector fields; first integrals; invariant algebraic curves; Liénard polynomial differential systems; 37K10; 34D30; 34C26;
D O I
暂无
中图分类号
学科分类号
摘要
We consider generalized Liénard polynomial differential systems of the form ẋ = y, ẏ = −g(x) − f(x)y, with f(x) and g(x) two polynomials satisfying deg(g) ≤ deg(f). In their work, Llibre and Valls have shown that, except in some particular cases, such systems have no Liouvillian first integral. In this letter, we give a direct and shorter proof of this result.
引用
收藏
页码:475 / 479
页数:4
相关论文
共 12 条
[1]  
Liénard A(1928)Étude des oscillations entretenues Revue générale de l’électricité 23 901-912
[2]  
Levinson N(1942)A general equation for relaxation oscillations, Duke Math. J 9 382-403
[3]  
Smith O K(1997)Number of limit cycles of the Liénard equation Phys Rev 56 3809-3813
[4]  
Giacomini H(1995)The limit cycle of the van der Pol equation is not algebraic J. Differential Equations 115 146-152
[5]  
Neukirch S(1998)Algebraic invariant curves for the Liénard equation Trans. Amer. Math. Soc 350 1681-1701
[6]  
Odani K(2010)Liouvillian first integrals for Liénard polynomial differential systems Proc. Amer. Math. Soc 138 3229-3239
[7]  
Żoładek H(1983)Elementary first integrals of differential equations Trans. Amer. Math. Soc 279 215-229
[8]  
Llibre J(1992)Liouvillian first integrals of differential equations Trans. Amer. Math. Soc 333 673-688
[9]  
Valls C(undefined)undefined undefined undefined undefined-undefined
[10]  
Prelle M J(undefined)undefined undefined undefined undefined-undefined