Solutions for the quasi-linear elliptic problems involving the critical Sobolev exponent

被引:0
作者
Yanbin Sang
Siman Guo
机构
[1] North University of China,Department of Mathematics, School of Science
来源
Journal of Inequalities and Applications | / 2017卷
关键词
quasi-linear elliptic problems; Nehari manifold; positive solution; best Sobolev constant;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we study the existence and multiplicity of positive solutions for the quasi-linear elliptic problems involving critical Sobolev exponent and a Hardy term. The main tools adopted in our proofs are the concentration compactness principle and Nehari manifold.
引用
收藏
相关论文
共 33 条
  • [1] Ghoussoub N(1998)Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents Trans. Am. Math. Soc. 352 5703-5743
  • [2] Yuan C(2006)Existence and nonexistence results for quasilinear elliptic equations involving the Boll. Unione Mat. Ital. 9 445-484
  • [3] Abdellaoui B(2005)-Laplacian Nonlinear Anal. 61 735-758
  • [4] Felli V(2015)Quasilinear elliptic problems with critical exponents and Hardy terms Bound. Value Probl. 2015 1973-1985
  • [5] Peral I(2008)Quasilinear elliptic equations with Hardy terms and Hardy-Sobolev critical exponents: nontrivial solutions Nonlinear Anal. 68 664-680
  • [6] Han P(2014)On the quasilinear elliptic problems with critical Sobolev-Hardy exponents and Hardy terms Comput. Math. Appl. 68 56-60
  • [7] Chen G(2016)On the exitence and multiplicity of solutions for a class of singular elliptic problems Appl. Math. Lett. 60 609-632
  • [8] Kang D(2014)Nonexistence of Ann. Mat. Pura Appl. 193 626-638
  • [9] Jalilian Y(2011)-Laplace equations with multiple critical Sobolev-Hardy terms Nonlinear Anal. 74 1314-1328
  • [10] Li Y(2011)Remarks on the existence of solutions to some quasilinear elliptic problems involving the Hardy-Leray potential Bound. Value Probl. 2011 1-22