Integrate new cross association fuzzy logical relationships to multi-factor high-order forecasting model of time series

被引:0
|
作者
Fang Li
Fusheng Yu
Xiao Wang
Xiyang Yang
Shihu Liu
Yuming Liu
机构
[1] Shanghai Maritime University,Department of Mathematics, College of Arts and Sciences
[2] Minnan Normal University,School of Mathematics and Statistics
[3] Beijing Normal University,School of Mathematical Sciences
[4] Beijing Institute of Petrochemical Technology,School of Economics and Management
[5] Quanzhou Normal University,Fujian Provincial Key Laboratory of Data Intensive Computing
[6] Yunnan Minzu University,School of Mathematics and Computer Sciences
来源
International Journal of Machine Learning and Cybernetics | 2021年 / 12卷
关键词
Fuzzy time series; Multi-factor high-order cross association fuzzy logical relationship; Multi-factor high-order long-cross association fuzzy logical relationship; Multi-factor high-order short-cross association fuzzy logical relationship; Forecasting;
D O I
暂无
中图分类号
学科分类号
摘要
In any multi-factor high-order fuzzy logical relationship (FLR) based forecasting model, a FLR reflects the influence of both the main factor (the forecasted factor) and all the influence factors on the main factor. Thus, the antecedent of a FLR includes multiple premises related to the main factor as well as all the influence factors. In real time series, there may exist another kind of influence: the cross association influence which is from a part of influence factor(s) on the main factor. To describe such kind of influence, we propose the concept of multi-factor high-order cross association FLRs (CAFLRs). The antecedent of a CAFLR includes some premises related to a part of influence factors. The proposed CAFLRs are divided into two categories: short-cross association FLRs and long-cross association FLRs, which describe the influence on the consequent observation from the premise observations at the closest consecutive moments and the premise observations at the non-closest non-consecutive moments respectively. Based on the concept of CAFLRs, a novel forecasting model is built up. In the proposed model, more FLRs than in the existing models can be mined from historical observations and added to the rule base, which further improve the prediction accuracy by raising the possibility of finding available forecasting FLRs. Superior performance of the proposed model has been verified in the experiments by comparing with Nonlinear Autoregressive Neural Networks, Autoregressive Model, Support Vector Regression and some other FLR based forecasting models.
引用
收藏
页码:2297 / 2315
页数:18
相关论文
共 50 条
  • [21] High-order fuzzy time series based on rough set for forecasting TAIEX
    Cheng, Ching-Hsue
    Teoh, Hia-Jong
    Chen, Tai-Liang
    PROCEEDINGS OF 2007 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2007, : 1354 - 1358
  • [22] Solar Energy Forecasting With Fuzzy Time Series Using High-Order Fuzzy Cognitive Maps
    Orang, Omid
    Silva, Rodrigo
    de Lima e Silva, PetrOnio Candido
    Guimaraes, Frederico Gadelha
    2020 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2020,
  • [23] A Forecasting Model Based on Multi-Valued Neutrosophic Sets and Two-Factor, Third-Order Fuzzy Fluctuation Logical Relationships
    Guan, Hongjun
    He, Jie
    Zhao, Aiwu
    Dai, Zongli
    Guan, Shuang
    SYMMETRY-BASEL, 2018, 10 (07):
  • [24] Bayesian network based probabilistic weighted high-order fuzzy time series forecasting
    Wang, Bo
    Liu, Xiaodong
    Chi, Ming
    Li, Yao
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 237
  • [25] A refined method of forecasting based on high-order intuitionistic fuzzy time series data
    Abhishekh
    Gautam S.S.
    Singh S.R.
    Progress in Artificial Intelligence, 2018, 7 (4) : 339 - 350
  • [26] A Novel Fuzzy Time Series Forecasting Method Based on Fuzzy Logical Relationships and Similarity Measures
    Cheng, Shou-Hsiung
    Chen, Shyi-Ming
    Jian, Wen-Shan
    2015 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC 2015): BIG DATA ANALYTICS FOR HUMAN-CENTRIC SYSTEMS, 2015, : 2250 - 2254
  • [27] A fuzzy integrated logical forecasting model for dry bulk shipping index forecasting: An improved fuzzy time series approach
    Duru, Okan
    EXPERT SYSTEMS WITH APPLICATIONS, 2010, 37 (07) : 5372 - 5380
  • [28] A novel fuzzy time series model based on fuzzy logical relationships tree
    Li, Xiongbiao (xiongbiaoli@126.com), 1600, International Association of Engineers (43):
  • [29] A New Forecasting Model of Fuzzy Time Series
    Wang Hongxu
    Guo Jianchun
    Feng Hao
    Jin Hailong
    ADVANCES IN MECHATRONICS AND CONTROL ENGINEERING III, 2014, 678 : 59 - +
  • [30] A Comprehensive High Order Type 2 Fuzzy Time Series Forecasting Model
    Zhang, Encheng
    Wang, Degang
    Li, Hongxing
    PROCEEDINGS OF THE 28TH CHINESE CONTROL AND DECISION CONFERENCE (2016 CCDC), 2016, : 6681 - 6686