Resolution and Limitations of X-Ray Micro-CT with Applications to Sandstones and Limestones

被引:0
作者
Jean E. Elkhoury
Raji Shankar
T. S. Ramakrishnan
机构
[1] Schlumberger-Doll Research,
[2] Charles Stark Draper Laboratory,undefined
来源
Transport in Porous Media | 2019年 / 129卷
关键词
X-ray imaging; X-ray micro-computed tomography (; ); Resolution; Digital rock; Pixel size; Rock porosity; Sandstone; Limestone;
D O I
暂无
中图分类号
学科分类号
摘要
X-ray microtomography (μCT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu \hbox {CT}$$\end{document}) scanning provides high-resolution images in applications ranging from medical to material sciences and failure analysis. In general, CT scanning relies on X-ray absorption to produce a 3D computed image of the material. In Earth Sciences, μCT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu \hbox {CT}$$\end{document} scans are used to characterize porosity and pore size, shape and topology of rock samples. For sufficiently large pore systems, the resulting segmented images may be used for quantitative transport calculations. In this note, we infer the limitations of μCT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu \hbox {CT}$$\end{document} images of rock samples, caused by attainable resolution for a representative sample size. To this end, (1) we perform a systematic analysis with the aid of a resolution chart, (2) we present example scans of an Indiana limestone and a Berea sandstone mini-cores, and (3) we process and analyze the images to extract pore structures using different segmentation algorithms. Porosity estimates inferred from μCT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu \hbox {CT}$$\end{document} images tend to be lower than bulk measurements.
引用
收藏
页码:413 / 425
页数:12
相关论文
共 43 条
  • [1] Auzerais FM(1996)Transport in sandstone: a study based on three dimensional microtomography Geophys. Res. Lett. 23 705-undefined
  • [2] Dunsmuir J(2001)Measurement of aperture distribution, capillary pressure, relative permeability, and in situ saturation in a rock fracture using computed tomography scanning Water Resour. Res. 37 649-undefined
  • [3] Ferréol BB(2013)High-resolution X-ray computed tomography in geosciences: a review of the current technology and applications Earth Sci. Rev. 123 1-undefined
  • [4] Martys N(2014)Quantitative intravoxel analysis of microCT-scanned resorbing ceramic biomaterials—perspectives for computer-aided biomaterial design J. Mater. Res. 29 2757-undefined
  • [5] Olson J(2016)Quantifying fracture geometry with X-ray tomography: technique of iterative local thresholding TILT for 3D image segmentation Comput. Geosci. 20 231-undefined
  • [6] Ramakrishnan TS(2018)Micro-CT-based identification of double porosity in fired clay ceramics J. Mater. Sci. 53 9411-undefined
  • [7] Rothman DH(2001)Acquisition, optimization, and interpretation of X-ray computed tomographic imagery: applications to the geosciences Comput. Geosci. 27 381-undefined
  • [8] Schwartz LM(1978)Picture thresholding using an iterative selection method IEEE Trans. Syst. Man Cybern. SMC–8 630-undefined
  • [9] Bertels SP(2011)Three-dimensional real-time imaging of bi-phasic flow through porous media Rev. Sci. Instrum. 82 1-undefined
  • [10] DiCarlo DA(1987)Tomographic imaging of three-phase flow experiments Rev. Sci. Instrum. 58 96-undefined