Topological duality for Tarski algebras

被引:0
作者
Sergio A. Celani
Leonardo M. Cabrer
机构
[1] Univ. Nac. del Centro,CONICET and Departamento de Matemáticas, Facultad de Ciencias Exactas
来源
Algebra universalis | 2008年 / 58卷
关键词
03G25; 06E15; 06F35; Tarski algebras; representation theorem; topological duality; subalgebras;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we will generalize the representation theory developed for finite Tarski algebras given in [7]. We will introduce the notion of Tarski space as a generalization of the notion of dense Tarski set, and we will prove that the category of Tarski algebras with semi-homomorphisms is dually equivalent to the category of Tarski spaces with certain closed relations, called T-relations. By these results we will obtain that the algebraic category of Tarski algebras is dually equivalent to the category of Tarski spaces with certain partial functions. We will apply these results to give a topological characterization of the subalgebras.
引用
收藏
页码:73 / 94
页数:21
相关论文
共 50 条
  • [41] Generalizations of Lie Algebras
    Kharchenko, V. K.
    Shestakov, I. P.
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2012, 22 (03) : 721 - 743
  • [42] Quasitriangular operator algebras
    Amini, Massoud
    Moradi, Mehdi
    Mousavi, Ismaeil
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 526 (02)
  • [43] Frobenius induction for algebras
    Coconet, Tiberiu
    Marcus, Andrei
    Todea, Constantin-Cosmin
    COMMUNICATIONS IN ALGEBRA, 2017, 45 (04) : 1542 - 1557
  • [44] ORTHOGEOMETRIES AND AW*-ALGEBRAS
    Harding, John
    Lindenhovius, Bert
    HOUSTON JOURNAL OF MATHEMATICS, 2022, 48 (01): : 33 - 58
  • [45] Algebras of fuzzy sets
    Bosnjak, I.
    Madarasz, R.
    Vojvodic, G.
    FUZZY SETS AND SYSTEMS, 2009, 160 (20) : 2979 - 2988
  • [46] Generalized Onsager Algebras
    Stokman, Jasper V.
    ALGEBRAS AND REPRESENTATION THEORY, 2020, 23 (04) : 1523 - 1541
  • [47] SEGAL FRECHET ALGEBRAS
    Abtahi, F.
    Rahnama, S.
    Rejali, A.
    ANALYSIS MATHEMATICA, 2018, 44 (04) : 389 - 400
  • [48] A Stone-type duality for semilattices with adjunctions
    Gimenez, Belen
    Pelaitay, Gustavo
    Zuluaga, William
    JOURNAL OF LOGIC AND COMPUTATION, 2025, 35 (03)
  • [49] A Spectral-style Duality for Distributive Posets
    Gonzalez, Luciano J.
    Jansana, Ramon
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2018, 35 (02): : 321 - 347
  • [50] CONVEX DUALITY FOR STOCHASTIC SINGULAR CONTROL PROBLEMS
    Bank, Peter
    Kauppila, Helena
    ANNALS OF APPLIED PROBABILITY, 2017, 27 (01) : 485 - 516