Relativistic model of anisotropic charged fluid sphere in general relativity

被引:0
作者
Neeraj Pant
N. Pradhan
Rajeev K. Bansal
机构
[1] National Defence Academy,Mathematics Department
[2] National Defence Academy,Physics Department
来源
Astrophysics and Space Science | 2016年 / 361卷
关键词
General relativity; Exact solution; Curvature coordinates; Anisotropic fluid sphere; Einstein-Maxwell; Reissner-Nordstrom;
D O I
暂无
中图分类号
学科分类号
摘要
In this present paper, we present a class of static, spherically symmetric charged anisotropic fluid models of super dense stars in isotropic coordinates by considering a particular type of metric potential, a specific choice of electric field intensity E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E$\end{document} and pressure anisotropy factor Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta$\end{document} which involve parameters K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$K$\end{document} (charge) and α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha$\end{document} (anisotropy) respectively. The solutions so obtained are utilized to construct the models for super-dense stars like neutron stars and strange quark stars. Our solutions are well behaved within the following ranges of different constant parameters. In the absence of pressure anisotropy and charge present model reduces to the isotropic model Pant et al. (Astrophys. Space Sci. 330:353–359, 2010). Our solution is well behaved in all respects for all values of X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$X$\end{document} lying in the range 0<X≤0.18\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0< X \leq 0.18$\end{document}, α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha$\end{document} lying in the range 0≤α≤6.6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0 \leq \alpha \leq6.6$\end{document}, K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$K$\end{document} lying in the range 0<K≤6.6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0< K \leq 6.6$\end{document} and Schwarzschild compactness parameter “u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$u$\end{document}” lying in the range 0<u≤0.38\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0< u \leq 0.38$\end{document}. Since our solution is well behaved for a wide ranges of the parameters, we can model many different types of ultra-cold compact stars like quark stars and neutron stars. We have shown that corresponding to X=0.088\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$X=0.088$\end{document}, α=0.6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha=0.6$\end{document} and K=4.3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$K=4.3$\end{document} for which u=0.2054\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$u=0.2054$\end{document} and by assuming surface density ρb=4.6888×1014g/cm3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\rho_{b} = 4.6888 \times 10^{14}~\mbox{g/cm}^{3}$\end{document} the mass and radius are found to be 1.51MΘ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1.51~M_{\varTheta}$\end{document} and 10.90 km respectively. Assuming surface density ρb=2×1014g/cm3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\rho_{b} = 2 \times 10^{14}~\mbox{g/cm}^{3}$\end{document} the mass and radius for a neutron star candidate are found to be 2.313MΘ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2.313~M_{\varTheta}$\end{document} and 16.690 km respectively. Hence we obtain masses and radii that fall in the range of what is generally expected for quark stars and neutron stars.
引用
收藏
相关论文
共 50 条
[31]   Relativistic compact anisotropic charged stellar models with Chaplygin equation of state [J].
Piyali Bhar ;
Mohammad Hassan Murad .
Astrophysics and Space Science, 2016, 361
[32]   Singularity free charged anisotropic solutions of Einstein–Maxwell field equations in general relativity [J].
K. N. Singh ;
N. Pant .
Indian Journal of Physics, 2016, 90 :843-851
[33]   Comparison among three types of relativistic charged anisotropic fluid spheres for self-bound stars [J].
A. H. M. Mahbubur Rahman .
Astrophysics and Space Science, 2019, 364
[34]   Singularity free charged anisotropic solutions of Einstein-Maxwell field equations in general relativity [J].
Singh, K. N. ;
Pant, N. .
INDIAN JOURNAL OF PHYSICS, 2016, 90 (07) :843-851
[35]   Anisotropic Generalized Ghost Pilgrim Dark Energy Model in General Relativity [J].
M. Vijaya Santhi ;
V. U. M. Rao ;
Y. Aditya .
International Journal of Theoretical Physics, 2017, 56 :362-371
[36]   Anisotropic Generalized Ghost Pilgrim Dark Energy Model in General Relativity [J].
Santhi, M. Vijaya ;
Rao, V. U. M. ;
Aditya, Y. .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2017, 56 (02) :362-371
[37]   New interior solution describing relativistic fluid sphere [J].
Singh, Ksh Newton ;
Pradhan, Narendra ;
Pant, Neeraj .
PRAMANA-JOURNAL OF PHYSICS, 2017, 89 (02)
[38]   New interior solution describing relativistic fluid sphere [J].
Ksh Newton Singh ;
Narendra Pradhan ;
Neeraj Pant .
Pramana, 2017, 89
[39]   Relativistic modeling of charged super-dense star with Einstein-Maxwell equations in general relativity [J].
Pant, Neeraj ;
Maurya, S. K. .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (17) :8260-8268
[40]   Relativistic compact stars with charged anisotropic matter [J].
Maurya, S. K. ;
Banerjee, Ayan ;
Channuie, Phongpichit .
CHINESE PHYSICS C, 2018, 42 (05)