Relativistic model of anisotropic charged fluid sphere in general relativity

被引:0
作者
Neeraj Pant
N. Pradhan
Rajeev K. Bansal
机构
[1] National Defence Academy,Mathematics Department
[2] National Defence Academy,Physics Department
来源
Astrophysics and Space Science | 2016年 / 361卷
关键词
General relativity; Exact solution; Curvature coordinates; Anisotropic fluid sphere; Einstein-Maxwell; Reissner-Nordstrom;
D O I
暂无
中图分类号
学科分类号
摘要
In this present paper, we present a class of static, spherically symmetric charged anisotropic fluid models of super dense stars in isotropic coordinates by considering a particular type of metric potential, a specific choice of electric field intensity E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E$\end{document} and pressure anisotropy factor Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta$\end{document} which involve parameters K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$K$\end{document} (charge) and α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha$\end{document} (anisotropy) respectively. The solutions so obtained are utilized to construct the models for super-dense stars like neutron stars and strange quark stars. Our solutions are well behaved within the following ranges of different constant parameters. In the absence of pressure anisotropy and charge present model reduces to the isotropic model Pant et al. (Astrophys. Space Sci. 330:353–359, 2010). Our solution is well behaved in all respects for all values of X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$X$\end{document} lying in the range 0<X≤0.18\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0< X \leq 0.18$\end{document}, α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha$\end{document} lying in the range 0≤α≤6.6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0 \leq \alpha \leq6.6$\end{document}, K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$K$\end{document} lying in the range 0<K≤6.6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0< K \leq 6.6$\end{document} and Schwarzschild compactness parameter “u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$u$\end{document}” lying in the range 0<u≤0.38\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0< u \leq 0.38$\end{document}. Since our solution is well behaved for a wide ranges of the parameters, we can model many different types of ultra-cold compact stars like quark stars and neutron stars. We have shown that corresponding to X=0.088\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$X=0.088$\end{document}, α=0.6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha=0.6$\end{document} and K=4.3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$K=4.3$\end{document} for which u=0.2054\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$u=0.2054$\end{document} and by assuming surface density ρb=4.6888×1014g/cm3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\rho_{b} = 4.6888 \times 10^{14}~\mbox{g/cm}^{3}$\end{document} the mass and radius are found to be 1.51MΘ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1.51~M_{\varTheta}$\end{document} and 10.90 km respectively. Assuming surface density ρb=2×1014g/cm3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\rho_{b} = 2 \times 10^{14}~\mbox{g/cm}^{3}$\end{document} the mass and radius for a neutron star candidate are found to be 2.313MΘ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2.313~M_{\varTheta}$\end{document} and 16.690 km respectively. Hence we obtain masses and radii that fall in the range of what is generally expected for quark stars and neutron stars.
引用
收藏
相关论文
共 50 条
[21]   ISOTROPIC CASES OF STATIC CHARGED FLUID SPHERES IN GENERAL RELATIVITY [J].
Das, Basanti ;
Ray, Pratap Chandra ;
Radinschi, Irina ;
Rahaman, Farook ;
Ray, Saibal .
INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2011, 20 (09) :1675-1687
[22]   Relativistic model of radiating massive fluid sphere [J].
Neeraj Pant ;
R. N. Mehta ;
B. C. Tewari .
Astrophysics and Space Science, 2010, 327 :279-283
[23]   Relativistic model of radiating massive fluid sphere [J].
Pant, Neeraj ;
Mehta, R. N. ;
Tewari, B. C. .
ASTROPHYSICS AND SPACE SCIENCE, 2010, 327 (02) :279-283
[24]   A class of well-behaved generalized charged analogues of Vaidya-Tikekar type fluid sphere in general relativity [J].
Kumar, Jitendra ;
Gupta, Y. K. .
ASTROPHYSICS AND SPACE SCIENCE, 2014, 351 (01) :243-250
[25]   A class of well-behaved generalized charged analogues of Vaidya-Tikekar type fluid sphere in general relativity [J].
Jitendra Kumar ;
Y. K. Gupta .
Astrophysics and Space Science, 2014, 351 :243-250
[26]   A class of relativistic anisotropic charged stellar models in isotropic coordinates [J].
Neeraj Pant ;
N. Pradhan ;
Mohammad Hassan Murad .
Astrophysics and Space Science, 2015, 355 :137-145
[27]   Conformal anisotropic relativistic charged fluid spheres with a linear equation of state [J].
Esculpi, M. ;
Aloma, E. .
EUROPEAN PHYSICAL JOURNAL C, 2010, 67 (3-4) :521-532
[28]   Three new exact solutions for charged fluid spheres in general relativity [J].
Maurya, S. K. ;
Gupta, Y. K. ;
Dayanandan, Baiju ;
Smitha, T. T. .
ASTROPHYSICS AND SPACE SCIENCE, 2015, 356 (01) :75-87
[29]   Three new exact solutions for charged fluid spheres in general relativity [J].
S. K. Maurya ;
Y. K. Gupta ;
Baiju Dayanandan ;
T. T. Smitha .
Astrophysics and Space Science, 2015, 356 :75-87
[30]   Relativistic compact anisotropic charged stellar models with Chaplygin equation of state [J].
Bhar, Piyali ;
Murad, Mohammad Hassan .
ASTROPHYSICS AND SPACE SCIENCE, 2016, 361 (10)