Generalized gauge theories with nonunitary parallel transport: * General relativity with cosmological constant as an example

被引:0
作者
G. Mack
T. Prüstel
机构
[1] Universität Hamburg,II. Institut für Theoretische Physik
来源
The European Physical Journal C - Particles and Fields | 2006年 / 46卷
关键词
Field Theory; General Relativity; Vector Space; Elementary Particle; Gauge Theory;
D O I
暂无
中图分类号
学科分类号
摘要
In gauge theories parallel transporters (PTs) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{U}(C)$\end{document} along paths C play an important role. Traditionally they are unitary or pseudoorthogonal maps between vector spaces. We propose to abandon unitarity of parallel transporters and with it the a priori assumption of metricity in general relativity. A *-operation on parallel transporters serves as a substitute for it, and this *-operation is proven to be unique on group theoretical grounds. The vierbein and the spin connection appear as distinguishable parts of a single de Sitter gauge field with field strength F. The action takes the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac{3}{16\pi G\Lambda}\int\text{tr}(\boldsymbol{F}\wedge\boldsymbol{F}i\boldsymbol{\gamma}_{5})$\end{document} and both the Einstein field equations with arbitrarily small but nonvanishing cosmological constant Λ and the condition of vanishing torsion are obtained from it. The equation of motion for classical massive bodies turns out to be de Sitter covariant.
引用
收藏
页码:255 / 267
页数:12
相关论文
共 8 条
  • [1] MacDowell undefined(1977)undefined Phys. Rev. Lett. 38 739-undefined
  • [2] Utiyama undefined(1956)undefined Phys. Rev. 101 1597-undefined
  • [3] Smolin undefined(2000)undefined Phys. Rev. D 61 084007-undefined
  • [4] Witten undefined(1988)undefined Nucl. Phys. B 311 46-undefined
  • [5] Dimakis undefined(1994)undefined J. Phys. A 27 3159-undefined
  • [6] Dimakis undefined(1994)undefined J. Math. Phys. 35 6703-undefined
  • [7] Dimakis undefined(1995)undefined J. Math. Phys. 36 3771-undefined
  • [8] Lawson undefined(1994)undefined J. reine angew. Math. 448 191-undefined