Motion of level sets by a generalized mean curvature

被引:0
|
作者
Yong-ai Z. [1 ,2 ]
Zu-han L. [1 ]
机构
[1] Department of Mathematics, Yangzhou University, Yangzhou
[2] Department of Mathematics, Shanghai University, Shanghai
关键词
level set; mean curvature; O186; principal curvature; signed distance function;
D O I
10.1007/BF02439461
中图分类号
学科分类号
摘要
Short time existence and uniqueness for the classical motion are studied by the function of the principal curvatures of a smooth surface and the Evans and Spruck's results are generalized. © 1980 Editorial Committee of Applied Mathematics and Mechanics.
引用
收藏
页码:1310 / 1318
页数:8
相关论文
共 50 条
  • [31] Generalized motion of level sets by functions of their curvatures on Riemannian manifolds
    D. Azagra
    M. Jiménez-Sevilla
    F. Macià
    Calculus of Variations and Partial Differential Equations, 2008, 33 : 133 - 167
  • [32] The fractal dimensions of the level sets of the generalized iterated Brownian motion
    Chang-qing Tong
    Zheng-yan Lin
    Jing Zheng
    Acta Mathematicae Applicatae Sinica, English Series, 2013, 29 : 597 - 602
  • [33] The Fractal Dimensions of the Level Sets of the Generalized Iterated Brownian Motion
    Tong, Chang-qing
    Lin, Zheng-yan
    Zheng, Jing
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2013, 29 (03): : 597 - 602
  • [34] Convergence rate of the Allen-Cahn equation to generalized motion by mean curvature
    Matthieu Alfaro
    Jérôme Droniou
    Hiroshi Matano
    Journal of Evolution Equations, 2012, 12 : 267 - 294
  • [35] Motion by mean curvature and nucleation
    Visintin, A
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 325 (01): : 55 - 60
  • [36] Generalized motion of level sets by functions of their curvatures on Riemannian manifolds
    Azagra, D.
    Jimenez-Sevilla, M.
    Macia, F.
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2008, 33 (02) : 133 - 167
  • [37] The Fractal Dimensions of the Level Sets of the Generalized Iterated Brownian Motion
    Changqing TONG
    Zhengyan LIN
    Jing ZHENG
    Acta Mathematicae Applicatae Sinica(English Series), 2013, 29 (03) : 597 - 602
  • [38] The Fractal Dimensions of the Level Sets of the Generalized Iterated Brownian Motion
    Chang-qing TONG
    Zheng-yan LIN
    Jing ZHENG
    Acta Mathematicae Applicatae Sinica, 2013, (03) : 597 - 602
  • [39] Mean curvature flow of Reifenberg sets
    Hershkovits, Or
    GEOMETRY & TOPOLOGY, 2017, 21 (01) : 441 - 484
  • [40] Motion by mean curvature and Dyson Brownian Motion
    Huang, Ching-Peng
    Inauen, Dominik
    Menon, Govind
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2023, 28