Solving non-linear Lane–Emden type equations using Bessel orthogonal functions collocation method

被引:0
作者
Kourosh Parand
Mehran Nikarya
Jamal Amani Rad
机构
[1] Shahid Beheshti University,Department of Computer Sciences, Faculty of Mathematical Sciences
来源
Celestial Mechanics and Dynamical Astronomy | 2013年 / 116卷
关键词
Orthogonal Bessel function; Lane–Emden type equations ; Collocation method; Non-linear ODE; Isothermal gas sphere equation;
D O I
暂无
中图分类号
学科分类号
摘要
The Lane–Emden type equations are employed in the modeling of several phenomena in the areas of mathematical physics and astrophysics. These equations are categorized as non-linear singular ordinary differential equations on the semi-infinite domain \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[0,\infty )$$\end{document}. In this research we introduce the Bessel orthogonal functions as new basis for spectral methods and also, present an efficient numerical algorithm based on them and collocation method for solving these well-known equations. We compare the obtained results with other results to verify the accuracy and efficiency of the presented scheme. To obtain the orthogonal Bessel functions we need their roots. We use the algorithm presented by Glaser et al. (SIAM J Sci Comput 29:1420–1438, 2007) to obtain the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N$$\end{document} roots of Bessel functions.
引用
收藏
页码:97 / 107
页数:10
相关论文
共 38 条
[1]  
Agrawal RP(2007)Second order initial value problems of Lane–Emden type Appl. Math. Lett. 20 1198-1205
[2]  
O’Regan D(2009)Homotopy analisis method for singular IVPs of Emden-Fowler type Commun. Nonlinear. Sci. Numer. Simul. 14 1121-1131
[3]  
Bataineh AS(2012)Application of the BPES to Lane–Emden equations governing polytropic and isothermal gas spheres New Astron. 17 565-569
[4]  
Noorani MSM(2011)Chebyshev spectral methods and the Lane–Emden problem Numer. Math. Theor. Meth. Appl. 4 142-157
[5]  
Hashim I(2007)Solution of a class of singular second-order IVPs by Homotopy-Perturbation method Phys. Lett. A 365 439-447
[6]  
Boubaker K(2008)Approximat solution of a differential equation arising in astrophysics using the VIM New Astron. 13 53-59
[7]  
Van Gorder RA(2007)A fast algorithm for the calculation of the roots of special functions SIAM J. Sci. Comput. 29 1420-1438
[8]  
Boyd JP(2006)A rational approximation and its applications to differential equations on the half line SIAM. J. Sci. Comput. 30 697-701
[9]  
Chowdhury MSH(2008)Hybrid functions for nonlinear initial-value problems with applications to Lane–Emden equations Phys. Lett. A. 37 5883-5886
[10]  
Hashim I(2012)A new reliable numerical algorithm based on the first kind of Bessel functions to solve prandtlBlasius laminar viscous flow over a semi-infinite flat plate Z. Naturforch. A 67 665-673