Automated calibration of somatosensory stimulation using reinforcement learning

被引:0
作者
Luigi Borda
Noemi Gozzi
Greta Preatoni
Giacomo Valle
Stanisa Raspopovic
机构
[1] ETH Zürich,Laboratory for Neuroengineering, Department of Health Science and Technology, Institute for Robotics and Intelligent Systems
来源
Journal of NeuroEngineering and Rehabilitation | / 20卷
关键词
Reinforcement learning; AI; Automatic calibration; Electrical stimulation; Sensory feedback; TENS; Neurostimulation; Neuropathy;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [41] Automated design of search algorithms based on reinforcement learning
    Yi, Wenjie
    Qu, Rong
    INFORMATION SCIENCES, 2023, 649
  • [42] Threshold Recurrent Reinforcement Learning Model for Automated Trading
    Maringer, Dietmar
    Ramtohul, Tikesh
    APPLICATIONS OF EVOLUTIONARY COMPUTATION, PT II, PROCEEDINGS, 2010, 6025 : 212 - 221
  • [43] Augmenting Automated Game Testing with Deep Reinforcement Learning
    Bergdahl, Joakim
    Gordillo, Camilo
    Tollmar, Konrad
    Gisslen, Linus
    2020 IEEE CONFERENCE ON GAMES (IEEE COG 2020), 2020, : 600 - 603
  • [44] A Framework for Automated Cellular Network Tuning With Reinforcement Learning
    Mismar, Faris B.
    Choi, Jinseok
    Evans, Brian L.
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2019, 67 (10) : 7152 - 7167
  • [45] Design of Reward Function on Reinforcement Learning for Automated Driving
    Goto, Takeru
    Kizumi, Yuki
    Iwasaki, Shun
    IFAC PAPERSONLINE, 2023, 56 (02): : 7948 - 7953
  • [46] Learning to calibrate: Reinforcement learning for guided calibration of visual-inertial rigs
    Nobre, Fernando
    Heckman, Christoffer
    INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2019, 38 (12-13) : 1388 - 1402
  • [47] Towards AI-controlled movement restoration: Learning FES-cycling stimulation with reinforcement learning
    Wannawas, Nat
    Faisal, A. Aldo
    2023 INTERNATIONAL CONFERENCE ON REHABILITATION ROBOTICS, ICORR, 2023,
  • [48] Behavior analysis of emergent rule discovery for cooperative automated driving using deep reinforcement learning
    Tomohiro Harada
    Johei Matsuoka
    Kiyohiko Hattori
    Artificial Life and Robotics, 2023, 28 : 31 - 42
  • [49] Behavior analysis of emergent rule discovery for cooperative automated driving using deep reinforcement learning
    Harada, Tomohiro
    Matsuoka, Johei
    Hattori, Kiyohiko
    ARTIFICIAL LIFE AND ROBOTICS, 2023, 28 (01) : 31 - 42
  • [50] Real-time model calibration with deep reinforcement learning
    Tian, Yuan
    Chao, Manuel Arias
    Kulkarni, Chetan
    Goebel, Kai
    Fink, Olga
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2022, 165