Some A-spectral radius inequalities for A-bounded Hilbert space operators

被引:0
作者
Kais Feki
机构
[1] University of Monastir,Faculty of Economic Sciences and Management of Mahdia
[2] University of Sfax,Laboratory Physics
来源
Banach Journal of Mathematical Analysis | 2022年 / 16卷
关键词
Positive operator; Semi-inner product; Spectral radius; Numerical radius; 46C05; 47A12; 47B65; 47B15; 47B20;
D O I
暂无
中图分类号
学科分类号
摘要
Let rA(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_A(T)$$\end{document} denote the A-spectral radius of an operator T which is bounded with respect to the seminorm induced by a positive operator A on a complex Hilbert space H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}$$\end{document}. In this paper, we aim to establish several A-spectral radius inequalities for products, sums and commutators of A-bounded operators. Some applications of our results are provided. Moreover, we give an affirmative answer to the question recently posed by Baklouti and Namouri (Banach J Math Anal 16:12, https://doi.org/10.1007/s43037-021-00167-1, 2022) regarding the connection between the notions of A-spectral radius and A-spectrum for A-bounded operators.
引用
收藏
相关论文
共 51 条
  • [1] Abu-Omar A(2013)A numerical radius inequality involving the generalized Aluthge transform Stud. Math. 1 69-75
  • [2] Kittaneh F(2015)Notes on some spectral radius and numerical radius inequalities Stud. Math. 2 97-109
  • [3] Abu-Omar A(2008)Partial isometries in semi-Hilbertian spaces Linear Algebra Appl. 428 1460-1475
  • [4] Kittaneh F(2008)Metric properties of projections in semi-Hilbertian spaces Integr. Eqn. Oper. Theory 62 11-28
  • [5] Arias ML(2009)Lifting properties in operator ranges Acta Sci. Math. (Szeged) 75 635-653
  • [6] Corach G(2018)On joint spectral radius of commuting operators in Hilbert spaces Linear Algebra Appl. 557 455-463
  • [7] Gonzalez MC(2018)Joint numerical ranges of operators in semi-Hilbertian spaces Linear Algebra Appl. 555 266-284
  • [8] Arias ML(2020)Joint normality of operators in semi-Hilbertian spaces Linear Multilinear Algebra 68 845-866
  • [9] Corach G(2021)Closed operators in semi-Hilbertian spaces Linear Multilinear Algebra 16 12-177
  • [10] Gonzalez MC(2022)Spectral analysis of bounded operators on semi-Hilbertian spaces Banach J. Math. Anal. 13 16-457