A Combinatorial Characterization of Cluster Algebras: On the Number of Arrows of Cluster Quivers

被引:0
作者
Qiuning Du
Fang Li
Jie Pan
机构
[1] Zhejiang University,School of Mathematical Sciences
来源
Annals of Combinatorics | 2022年 / 26卷
关键词
Cluster algebra; Cluster quiver; Mutation equivalence; Riemann surface; Triangulation; 13F60 (primary);
D O I
暂无
中图分类号
学科分类号
摘要
Let Q~\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde{Q}$$\end{document} (resp. Q) be an extended exchange (resp. exchange) cluster quiver of finite mutation type. We introduce the distribution set of the numbers of arrows for Mut[Q~]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Mut[\tilde{Q}]$$\end{document} (resp. Mut[Q]), give the maximum and minimum numbers of the distribution set and establish the existence of an extended complete walk (resp. a complete walk). As a consequence, we prove that the distribution set for Mut[Q~]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Mut[\tilde{Q}]$$\end{document} (resp. Mut[Q]) is continuous except in the case of exceptional cluster algebras. In case of cluster quivers Qinf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{inf}$$\end{document} of infinite mutation type, the distribution set for Mut[Qinf]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Mut[Q_{inf}]$$\end{document} in general is not continuous. Besides, we show that the maximal number of arrows of quivers in Mut[Qinf]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Mut[Q_{inf}]$$\end{document} is infinite if and only if the maximal number of arrows between any two vertices of a quiver in Mut[Qinf]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Mut[Q_{inf}]$$\end{document} is infinite.
引用
收藏
页码:1077 / 1120
页数:43
相关论文
共 14 条
[1]  
Bucher E(2018)Recovering the topology of surfaces from cluster algebras Math. Z. 288 565-594
[2]  
Yakimov M(2012)Cluster algebras of finite mutation type via unfoldings Int. Math. Res. Not. 8 1768-1804
[3]  
Felikson A(2012)Skew-symmetric cluster algebras of finite mutation type J. Eur. Math. Soc. 14 1135-1180
[4]  
Shapiro M(2002)Cluster algebras I. Foundations. J. Amer. Math. Soc. 15 497-529
[5]  
Tumarkin P(2008)Cluster algebras and triangulated surfaces I. Cluster complexes. Acta Math. 201 83-146
[6]  
Felikson A(2017)Maximal green sequences for quivers of finite mutation type Adv. Math. 319 182-210
[7]  
Shapiro M(undefined)undefined undefined undefined undefined-undefined
[8]  
Tumarkin P(undefined)undefined undefined undefined undefined-undefined
[9]  
Fomin S(undefined)undefined undefined undefined undefined-undefined
[10]  
Zelevinsky A(undefined)undefined undefined undefined undefined-undefined