Multiplicity of solutions for a class of fractional p(x,⋅)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p(x,\cdot )$\end{document}-Kirchhoff-type problems without the Ambrosetti–Rabinowitz condition

被引:0
|
作者
M. K. Hamdani
J. Zuo
N. T. Chung
D. D. Repovš
机构
[1] Military Research Center,Science and Technology for Defense Laboratory
[2] Military Aeronautical Specialities School,Mathematics Department, Faculty of Science
[3] University of Sfax,College of Science
[4] Hohai University,Faculty of Applied Sciences
[5] Jilin Engineering Normal University,Departamento de Matemática
[6] Universidade Estadual de Campinas,Department of Mathematics
[7] Quang Binh University,Faculty of Education
[8] University of Ljubljana,Faculty of Mathematics and Physics
[9] University of Ljubljana,undefined
[10] Institute of Mathematics,undefined
[11] Physics and Mechanics,undefined
关键词
Fractional ; -Kirchhoff-type problems; -fractional Laplace operator; Ambrosetti–Rabinowitz type conditions; Symmetric mountain pass theorem; Cerami compactness condition; Fractional Sobolev spaces with variable exponent; Multiplicity of solutions; 35R11; 35J20; 35J60;
D O I
10.1186/s13661-020-01447-9
中图分类号
学科分类号
摘要
We are interested in the existence of solutions for the following fractional p(x,⋅)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p(x,\cdot )$\end{document}-Kirchhoff-type problem: {M(∫Ω×Ω|u(x)−u(y)|p(x,y)p(x,y)|x−y|N+p(x,y)sdxdy)(−Δ)p(x,⋅)su=f(x,u),x∈Ω,u=0,x∈∂Ω,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \textstyle\begin{cases} M ( \int _{\Omega \times \Omega } {\frac{ \vert u(x)-u(y) \vert ^{p(x,y)}}{p(x,y) \vert x-y \vert ^{N+p(x,y)s}}} \,dx \,dy )(-\Delta )^{s}_{p(x,\cdot )}u = f(x,u), \quad x\in \Omega , \\ u= 0, \quad x\in \partial \Omega , \end{cases} $$\end{document} where Ω⊂RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Omega \subset \mathbb{R}^{N}$\end{document}, N≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N\geq 2$\end{document} is a bounded smooth domain, s∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$s\in (0,1)$\end{document}, p:Ω‾×Ω‾→(1,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p: \overline{\Omega }\times \overline{\Omega } \rightarrow (1, \infty )$\end{document}, (−Δ)p(x,⋅)s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(-\Delta )^{s}_{p(x,\cdot )}$\end{document} denotes the p(x,⋅)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p(x,\cdot )$\end{document}-fractional Laplace operator, M:[0,∞)→[0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$M: [0,\infty ) \to [0, \infty )$\end{document}, and f:Ω×R→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f: \Omega \times \mathbb{R} \to \mathbb{R}$\end{document} are continuous functions. Using variational methods, especially the symmetric mountain pass theorem due to Bartolo–Benci–Fortunato (Nonlinear Anal. 7(9):981–1012, 1983), we establish the existence of infinitely many solutions for this problem without assuming the Ambrosetti–Rabinowitz condition. Our main result in several directions extends previous ones which have recently appeared in the literature.
引用
收藏
相关论文
共 50 条