共 50 条
[41]
Upper and lower solutions for an integral boundary problem with two different orders (p,q)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\left ( p,q\right ) $\end{document}-fractional difference
[J].
Journal of Inequalities and Applications,
2024 (1)
[42]
Existence of positive solutions for a class of px,qx\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\left( p\left( x\right) , q\left( x\right) \right) $$\end{document}-Laplacian systems
[J].
Rendiconti del Circolo Matematico di Palermo Series 2,
2018, 67 (1)
:93-103
[43]
Multiple positive solutions to singular fractional differential equations with integral boundary conditions involving p−q\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$p-q$\end{document}-order derivatives
[J].
Advances in Difference Equations,
2020 (1)
[44]
Existence results for anti-periodic fractional coupled systems with p-\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$p-$$\end{document}Laplacian operator via measure of noncompactness in Banach spaces
[J].
Journal of Mathematical Sciences,
2023, 271 (2)
:162-175
[45]
Integral Solution for a Parabolic Equation Driven by the p(x)-Laplacian Operator with Nonlinear Boundary Conditions and L1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L^{1}$$\end{document} Data
[J].
Mediterranean Journal of Mathematics,
2023, 20 (5)
[46]
Estimates for the Heat Flow in Optimal Spaces of Unbounded Initial Data in Rd\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathbb {R}^{{d}}$$\end{document} and Applications to the Ornstein–Uhlenbeck Semigroup
[J].
Mediterranean Journal of Mathematics,
2023, 20 (2)
[47]
Spatial components dependence for bidimensional time-constant AR(1) model with α\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\alpha $$\end{document}-stable noise and triangular coefficients matrix
[J].
International Journal of Advances in Engineering Sciences and Applied Mathematics,
2021, 13 (2-3)
:191-205
[48]
On the Discrete Population Models Without and With the Influence of (k+1)th\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(k+1)^{th}$$\end{document} Previous Generation of Another Species
[J].
International Journal of Applied and Computational Mathematics,
2025, 11 (2)
[49]
On the asymptotic behavior of certain solutions of the Dirichlet problem for the equation -Δpu=λ|u|q-2u\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$-\Delta _p u=\lambda |u|^{q-2}u$$\end{document}
[J].
Monatshefte für Mathematik,
2013, 172 (2)
:127-149
[50]
Decay estimates for quasilinear elliptic equations and a Brezis–Nirenberg result in D1,p(RN)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$D^{1,p}({\mathbb R}^N)$$\end{document}
[J].
Journal of Elliptic and Parabolic Equations,
2024, 10 (1)
:303-328