共 50 条
[31]
On a planar Hartree–Fock type system involving the (2,q)-\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(2,q)-$$\end{document}Laplacian in the zero mass case
[J].
Nonlinear Differential Equations and Applications NoDEA,
2025, 32 (2)
[32]
Multiple Solutions for a Class of Nonhomogeneous Fractional Schrödinger Equations in RN\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathbb {R}^{N}$$\end{document}
[J].
Journal of Dynamics and Differential Equations,
2018, 30 (3)
:1119-1143
[33]
Weak Solutions for a System Involving Anisotropic p→(·),q→(·)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\left( \overrightarrow{p}(\cdot ), \overrightarrow{q}(\cdot )\right) $$\end{document}-Laplacian Operators
[J].
Iranian Journal of Science,
2024, 48 (5)
:1253-1263
[34]
Existence of solutions for Erdélyi–Kober fractional integral boundary value problems with p(t)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$p ( t )$\end{document}-Laplacian operator
[J].
Advances in Difference Equations,
2020 (1)
[35]
Existence of infinitely many weak solutions for a Neumann elliptic equations involving the p→(x)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\vec {p}(x)$$\end{document}-laplacian operator
[J].
Rendiconti del Circolo Matematico di Palermo (1952 -),
2015, 64 (3)
:459-473
[36]
L∞\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L^{\infty }$$\end{document}-norm and energy quantization for the planar Lane–Emden problem with large exponent
[J].
Archiv der Mathematik,
2018, 111 (4)
:421-429
[37]
Variational methods for a p(x,·)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$p(x,\cdot )$$\end{document}-fractional bi-nonlocal problem of elliptic typeVariational methods for a p(x,·)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$p(x,\cdot )$$\end{document}-fractional bi-nonlocal...E. Azroul et al.
[J].
Rendiconti del Circolo Matematico di Palermo Series 2,
2025, 74 (1)
[38]
Lipschitz regularity for viscosity solutions to parabolic p(x,t)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\varvec{p(x,t)}}$$\end{document}-Laplacian equations on Riemannian manifolds
[J].
Nonlinear Differential Equations and Applications NoDEA,
2018, 25 (4)
[39]
Mountain pass solution for the weighted Dirichlet (p(z),q(z))\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$(p(z),q(z))$\end{document}-problem
[J].
Boundary Value Problems,
2022 (1)
[40]
An asymptotic behavior of positive solutions for a new class of elliptic systems involving of px,qx\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\left( p\left( x\right) ,q\left( x\right) \right) $$\end{document}-Laplacian systems
[J].
Boletín de la Sociedad Matemática Mexicana,
2019, 25 (1)
:145-162