Asymptotic behavior of ground state radial solutions for problems involving the Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi $$\end{document}-Laplacian

被引:0
作者
Abdelwaheb Dhifli
Rym Chemmam
Syrine Masmoudi
机构
[1] Université Tunis El Manar,Institut préparatoire aux etudes d’ingénieurs d’el Manar, LR10ES09 Modélisation mathématique, Analyse harmonique et théorie du potentiel
[2] Université Tunis El Manar,Faculté des sciences de Tunis, LR10ES09 Modélisation mathématique, Analyse harmonique et théorie du potentiel
关键词
Quasilinear elliptic equation; -Laplacian operator; Positive solutions; Asymptotic behaviour; 34B18; 35B40; 31C15;
D O I
10.1007/s11117-019-00715-y
中图分类号
学科分类号
摘要
We are concerned with the existence of positive solutions to the following boundary value problem in (0,∞),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(0,\infty ),$$\end{document}1AAϕu′u′′=-a(t)uα,t>0,Aϕu′u′0=0andlimt→+∞u(t)=0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \frac{1}{A}\left( A\phi \left( \left| u^{\prime }\right| \right) u^{\prime }\right) ^{\prime }=-a(t)u^{\alpha },t>0,\left( A\phi \left( \left| u^{\prime }\right| \right) u^{\prime }\right) \left( 0\right) =0\text { and}\lim \nolimits _{t\rightarrow +\infty }u(t)=0, \end{aligned}$$\end{document}where α≥0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \ge 0,$$\end{document}ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} is a nonnegative continuously differentiable function on 0,∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left[ 0,\infty \right) $$\end{document}, A is a continuous function on 0,∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left[ 0,\infty \right) $$\end{document}, differentiable, positive on 0,∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( 0,\infty \right) $$\end{document} and a is a nonnegative function satisfying some appropriate assumptions related to Karamata regular variation theory. We give also, estimates on such solutions.
引用
收藏
页码:957 / 971
页数:14
相关论文
共 50 条
[31]   On a planar Hartree–Fock type system involving the (2,q)-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2,q)-$$\end{document}Laplacian in the zero mass case [J].
J. C. de Albuquerque ;
J. L. Carvalho ;
E. D. Silva .
Nonlinear Differential Equations and Applications NoDEA, 2025, 32 (2)
[32]   Multiple Solutions for a Class of Nonhomogeneous Fractional Schrödinger Equations in RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^{N}$$\end{document} [J].
Vincenzo Ambrosio ;
Hichem Hajaiej .
Journal of Dynamics and Differential Equations, 2018, 30 (3) :1119-1143
[33]   Weak Solutions for a System Involving Anisotropic p→(·),q→(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( \overrightarrow{p}(\cdot ), \overrightarrow{q}(\cdot )\right) $$\end{document}-Laplacian Operators [J].
A. Razani ;
F. Safari ;
T. Soltani .
Iranian Journal of Science, 2024, 48 (5) :1253-1263
[35]   Existence of infinitely many weak solutions for a Neumann elliptic equations involving the p→(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vec {p}(x)$$\end{document}-laplacian operator [J].
Ahmed Ahmed ;
Hassane Hjiaj ;
Abdelfattah Touzani .
Rendiconti del Circolo Matematico di Palermo (1952 -), 2015, 64 (3) :459-473
[36]   L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{\infty }$$\end{document}-norm and energy quantization for the planar Lane–Emden problem with large exponent [J].
F. De Marchis ;
M. Grossi ;
I. Ianni ;
F. Pacella .
Archiv der Mathematik, 2018, 111 (4) :421-429
[37]   Variational methods for a p(x,·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p(x,\cdot )$$\end{document}-fractional bi-nonlocal problem of elliptic typeVariational methods for a p(x,·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p(x,\cdot )$$\end{document}-fractional bi-nonlocal...E. Azroul et al. [J].
E. Azroul ;
N. Kamali ;
M. A. Ragusa ;
M. Shimi .
Rendiconti del Circolo Matematico di Palermo Series 2, 2025, 74 (1)
[39]   Mountain pass solution for the weighted Dirichlet (p(z),q(z))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(p(z),q(z))$\end{document}-problem [J].
Nadiyah Hussain Alharthi ;
Kholoud Saad Albalawi ;
Francesca Vetro .
Boundary Value Problems, 2022 (1)
[40]   An asymptotic behavior of positive solutions for a new class of elliptic systems involving of px,qx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( p\left( x\right) ,q\left( x\right) \right) $$\end{document}-Laplacian systems [J].
Salah Boulaaras ;
Rafik Guefaifia ;
Sarah Kabli .
Boletín de la Sociedad Matemática Mexicana, 2019, 25 (1) :145-162