共 50 条
- [21] Multiplicity and concentration results for a (p, q)-Laplacian problem in RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^{N}$$\end{document} Zeitschrift für angewandte Mathematik und Physik, 2021, 72 (1)
- [22] Existence and multiplicity of solutions for p(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p(x)$\end{document}-Laplacian problem with Steklov boundary condition Boundary Value Problems, 2022 (1)
- [23] Existence of solutions for a nonhomogeneous Dirichlet problem involving p(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p(x)$\end{document}-Laplacian operator and indefinite weight Boundary Value Problems, 2019 (1)
- [24] Positive Solutions for Four-Point Boundary Value Problem Involving the p(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p(t)$$\end{document}-Laplacian Qualitative Theory of Dynamical Systems, 2016, 15 (1) : 39 - 48
- [25] Existence of solutions for fractional Sturm-Liouville boundary value problems with p(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p(t)$\end{document}-Laplacian operator Boundary Value Problems, 2017 (1)
- [26] Quasilinear elliptic equations on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^{N}}$$\end{document} with singular potentials and bounded nonlinearity Zeitschrift für angewandte Mathematik und Physik, 2012, 63 (1) : 51 - 62
- [27] Initial and Boundary Blow-Up Problem for p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-Laplacian Parabolic Equation with General Absorption Journal of Dynamics and Differential Equations, 2016, 28 (1) : 253 - 279
- [28] On Solutions of Nonlinear Elliptic Equations with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\boldsymbol{L}_{\mathbf{1}}$$\end{document}-Data in Unbounded Domains Lobachevskii Journal of Mathematics, 2023, 44 (5) : 1879 - 1901
- [29] Existence of positive solution to boundary value problem of fractional differential equations with p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-Laplacian operator Journal of Applied Mathematics and Computing, 2015, 47 (1-2) : 237 - 248
- [30] On a planar Hartree–Fock type system involving the (2,q)-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2,q)-$$\end{document}Laplacian in the zero mass case Nonlinear Differential Equations and Applications NoDEA, 2025, 32 (2)