共 50 条
[21]
Existence and multiplicity of solutions for p(x)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$p(x)$\end{document}-Laplacian problem with Steklov boundary condition
[J].
Boundary Value Problems,
2022 (1)
[22]
Existence of solutions for a nonhomogeneous Dirichlet problem involving p(x)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$p(x)$\end{document}-Laplacian operator and indefinite weight
[J].
Boundary Value Problems,
2019 (1)
[23]
Multiplicity and concentration results for a (p, q)-Laplacian problem in RN\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb {R}}^{N}$$\end{document}
[J].
Zeitschrift für angewandte Mathematik und Physik,
2021, 72 (1)
[24]
Positive Solutions for Four-Point Boundary Value Problem Involving the p(t)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$p(t)$$\end{document}-Laplacian
[J].
Qualitative Theory of Dynamical Systems,
2016, 15 (1)
:39-48
[25]
Existence of solutions for fractional Sturm-Liouville boundary value problems with p(t)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$p(t)$\end{document}-Laplacian operator
[J].
Boundary Value Problems,
2017 (1)
[26]
Initial and Boundary Blow-Up Problem for p\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$p$$\end{document}-Laplacian Parabolic Equation with General Absorption
[J].
Journal of Dynamics and Differential Equations,
2016, 28 (1)
:253-279
[27]
On Solutions of Nonlinear Elliptic Equations with \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\boldsymbol{L}_{\mathbf{1}}$$\end{document}-Data in Unbounded Domains
[J].
Lobachevskii Journal of Mathematics,
2023, 44 (5)
:1879-1901
[28]
Quasilinear elliptic equations on \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb{R}^{N}}$$\end{document} with singular potentials and bounded nonlinearity
[J].
Zeitschrift für angewandte Mathematik und Physik,
2012, 63 (1)
:51-62
[29]
Fixed point results on nonlinear composition operators A∘B\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$A\circ B$\end{document} and applications
[J].
Journal of Inequalities and Applications,
2025 (1)
[30]
Existence of positive solution to boundary value problem of fractional differential equations with p\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$p$$\end{document}-Laplacian operator
[J].
Journal of Applied Mathematics and Computing,
2015, 47 (1-2)
:237-248