Asymptotic behavior of ground state radial solutions for problems involving the Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi $$\end{document}-Laplacian

被引:0
|
作者
Abdelwaheb Dhifli
Rym Chemmam
Syrine Masmoudi
机构
[1] Université Tunis El Manar,Institut préparatoire aux etudes d’ingénieurs d’el Manar, LR10ES09 Modélisation mathématique, Analyse harmonique et théorie du potentiel
[2] Université Tunis El Manar,Faculté des sciences de Tunis, LR10ES09 Modélisation mathématique, Analyse harmonique et théorie du potentiel
关键词
Quasilinear elliptic equation; -Laplacian operator; Positive solutions; Asymptotic behaviour; 34B18; 35B40; 31C15;
D O I
10.1007/s11117-019-00715-y
中图分类号
学科分类号
摘要
We are concerned with the existence of positive solutions to the following boundary value problem in (0,∞),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(0,\infty ),$$\end{document}1AAϕu′u′′=-a(t)uα,t>0,Aϕu′u′0=0andlimt→+∞u(t)=0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \frac{1}{A}\left( A\phi \left( \left| u^{\prime }\right| \right) u^{\prime }\right) ^{\prime }=-a(t)u^{\alpha },t>0,\left( A\phi \left( \left| u^{\prime }\right| \right) u^{\prime }\right) \left( 0\right) =0\text { and}\lim \nolimits _{t\rightarrow +\infty }u(t)=0, \end{aligned}$$\end{document}where α≥0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \ge 0,$$\end{document}ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} is a nonnegative continuously differentiable function on 0,∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left[ 0,\infty \right) $$\end{document}, A is a continuous function on 0,∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left[ 0,\infty \right) $$\end{document}, differentiable, positive on 0,∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( 0,\infty \right) $$\end{document} and a is a nonnegative function satisfying some appropriate assumptions related to Karamata regular variation theory. We give also, estimates on such solutions.
引用
收藏
页码:957 / 971
页数:14
相关论文
共 50 条