Dynamic flow and shear stress as key parameters for intestinal cells morphology and polarization in an organ-on-a-chip model

被引:0
|
作者
Chiara A. M. Fois
Aaron Schindeler
Peter Valtchev
Fariba Dehghani
机构
[1] The University of Sydney,School of Chemical and Biomolecular Engineering
[2] The University of Sydney,Centre for Advanced Food Engineering
[3] The Children’s Hospital at Westmead and the Westmead Institute for Medical Research,Bioengineering & Molecular Medicine Laboratory
来源
Biomedical Microdevices | 2021年 / 23卷
关键词
Organ-on-a-chip; Microfluidics; Cell differentiation; Intestinal models; Computational fluid dynamics;
D O I
暂无
中图分类号
学科分类号
摘要
Gut-on-a-chip microfluidic devices have emerged as versatile and practical systems for modeling the human intestine in vitro. Cells cultured under microfluidic conditions experience the effect of shear stress, used as a biomechanical cue to promote a faster cell polarization in Caco-2 cells when compared with static culture conditions. However, published systems to date have utilized a constant flow rate that fails to account for changes in cell shear stress (τc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tau }_{c}$$\end{document}) resulting from changes in cell elongation that occur with differentiation. In this study, computational fluid dynamics (CFD) simulations predict that cells with villi-like morphology experience a τc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tau }_{c}$$\end{document} higher than bulge-like cells at the initial growth stages. Therefore, we investigated the use of a dynamic flow rate to maintain a constant τc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tau }_{c}$$\end{document} across the experiment. Microscopic assessment of cell morphology and dome formation confirmed the initiation of Caco-2 polarization within three days. Next, adopting our dynamic approach, we evaluated whether the following decreased flow could still contribute to complete cell differentiation if compared with the standard constant flow methodology. Caco-2 cells polarized under both conditions, secreted mucin-2 and villin and formed tight junctions and crypt-villi structures. Gene expression was not impacted using the dynamic flow rate. In conclusion, our dynamic flow approach still facilitates cell differentiation while enabling a reduced consumption of reagents.
引用
收藏
相关论文
共 34 条
  • [1] Dynamic flow and shear stress as key parameters for intestinal cells morphology and polarization in an organ-on-a-chip model
    Fois, Chiara A. M.
    Schindeler, Aaron
    Valtchev, Peter
    Dehghani, Fariba
    BIOMEDICAL MICRODEVICES, 2021, 23 (04)
  • [2] OPTIMIZATION OF THE FLOW PARAMETERS FOR A LIVER ORGAN-ON-A-CHIP COMPUTATIONAL MODEL
    Pinto, Edgar
    Carvalho, Violeta
    Rodrigues, Nelson
    Rodrigues, Raquel O.
    Lima, Rui A.
    Teixeira, Senhorinha
    PROCEEDINGS OF ASME 2023 INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, IMECE2023, VOL 5, 2023,
  • [3] Replicating endothelial shear stress in organ-on-a-chip for predictive hypericin photodynamic efficiency
    Ma, Hui Ling
    Urbaczek, Ana Carolina
    de Souza, Fayene Zeferino Ribeiro
    Bernal, Claudia
    Perussi, Janice Rodrigues
    Carrilho, Emanuel
    INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2023, 634
  • [4] THERMAL AND FLUID FLOW BEHAVIOR WITHIN AN ORGAN-ON-A-CHIP MODEL: A NUMERICAL STUDY
    Barbosa, Filipe
    Carvalho, Violeta
    Nobrega, Glauco
    Pinho, Diana
    Duenas-Pamplona, Jorge
    Abreu, Cristiano
    Teixeira, Senhorinha
    Lima, Rui A.
    Moita, Ana
    PROCEEDINGS OF ASME 2024 7TH INTERNATIONAL CONFERENCE ON MICRO/NANOSCALE HEAT AND MASS TRANSFER, MNHMT 2024, 2024,
  • [5] Self-assembled human placental model from trophoblast stem cells in a dynamic organ-on-a-chip system
    Cao, Rongkai
    Wang, Yaqing
    Liu, Jiayue
    Rong, Lujuan
    Qin, Jianhua
    CELL PROLIFERATION, 2023, 56 (05)
  • [6] Organ-on-a-Chip: Design and Simulation of Various Microfluidic Channel Geometries for the Influence of Fluid Dynamic Parameters
    Pisapia, Francesca
    Balachandran, Wamadeva
    Rasekh, Manoochehr
    APPLIED SCIENCES-BASEL, 2022, 12 (08):
  • [7] Combining Human Organoids and Organ-on-a-Chip Technology to Model Intestinal Region-Specific Functionality
    Kulkarni, Gauri
    Apostolou, Athanasia
    Ewart, Lorna
    Lucchesi, Carolina
    Kasendra, Magdalena
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2022, (183):
  • [8] Numerical evaluation and experimental validation of fluid flow behavior within an organ-on-a-chip model
    Carvalho, Violeta
    Goncalves, Ines M.
    Rodrigues, Nelson
    Sousa, Paulo
    Pinto, Vania
    Minas, Graca
    Kaji, Hirokazu
    Shin, Su Ryon
    Rodrigues, Raquel O.
    Teixeira, Senhorinha F. C. F.
    Lima, Rui A.
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2024, 243
  • [9] A dynamic flow fetal membrane organ-on-a-chip system for modeling the effects of amniotic fluid motion
    Kim, Sungjin
    Lam, Po Yi
    Richardson, Lauren S.
    Menon, Ramkumar
    Han, Arum
    BIOMEDICAL MICRODEVICES, 2024, 26 (03)
  • [10] Numerical approach-based simulation to predict cerebrovascular shear stress in a blood-brain barrier organ-on-a-chip
    Jeong, Sehoon
    Seo, Jae-Hyeong
    Garud, Kunal Sandip
    Park, Sung Woo
    Lee, Moo-Yeon
    BIOSENSORS & BIOELECTRONICS, 2021, 183