A Practical Method for Estimating the Volumetric Intensity of Non-persistent Discontinuities on Rock Exposures

被引:0
作者
Pedro Pazzoto Cacciari
Marcos Massao Futai
机构
[1] Polytechnique Montréal,Department of Civil, Geological and Mining Engineering
[2] University of São Paulo. Cidade Universitária,Civil Engineering Graduate Program, School of Engineering
来源
Rock Mechanics and Rock Engineering | 2022年 / 55卷
关键词
Discontinuity intensity; Discontinuity persistence; Discontinuity density; Rock exposure; Synthetic rock mass;
D O I
暂无
中图分类号
学科分类号
摘要
The volumetric discontinuity intensity (P32\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{32}$$\end{document}) is defined as the total discontinuity area by rock mass volume. P32\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{32}$$\end{document} has been considered the most suitable parameter to quantify discontinuities within rock masses because it takes into account density and size and does not depend on orientation. Currently, determining the P32\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{32}$$\end{document} from discontinuity mapping of rock exposures requires a series of discrete fracture network (DFN) simulations. This method is time-consuming and requires advanced software; thus, it is generally not used in practical rock engineering applications. This paper proposes a new method to obtain the P32\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{32}$$\end{document} of rock masses from 2D rock exposures, based on well-known weighted joint density (wJd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{wJd}}$$\end{document}) and mean trace length (μl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu_{\text{l}}$$\end{document}) estimates. The method was developed and validated using DFN modeling and compared with P32\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{32}$$\end{document} estimates obtained by computational simulations in a real case study (Monte Seco tunnel). Finally, the synthetic rock mass (SRM) modeling technique was used to investigate the effects of P32\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{32}$$\end{document} on the mechanical behavior of a hypothetical rock mass, highlighting the individual contributions of wJd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{wJd}}$$\end{document} and μl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu_{\text{l}}$$\end{document}. The results demonstrate that the proposed method is reliable and can estimate the P32\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{32}$$\end{document} of rock masses without requiring computation simulations. Moreover, the SRM analysis showed that discontinuity density and size have a similar impact on the mechanical behavior of rock masses with non-persistent discontinuity sets.
引用
收藏
页码:6063 / 6078
页数:15
相关论文
共 78 条
[1]  
Cacciari PP(2016)Mapping and characterization of rock discontinuities in a tunnel using 3D terrestrial laser scanning Bull Eng Geol Environ 75 223-237
[2]  
Futai MM(2017)Modeling a shallow rock tunnel using terrestrial laser scanning and discrete fracture networks Rock Mech Rock Eng 50 1217-1242
[3]  
Cacciari PP(2021)The influence of fresh and weathered rock foliation on the stability of the monte seco tunnel Rock Mech Rock Eng 54 537-558
[4]  
Futai MM(2018)Challenges in the characterisation of intact rock bridges in rock slopes Eng Geol 245 81-96
[5]  
Cacciari PP(2021)A new approach to characterise the impact of rock bridges in stability analysis Rock Mech Rock Eng 25 614-628
[6]  
Futai MM(2010)Geotechnical and operational applications for 3-dimensional laser scanning in drill and blast tunnels Tunn Undergr Sp Technol 49 611-619
[7]  
Elmo D(2016)A 3D fracture network model for the undisturbed rock mass at the Songta Dam site based on small samples Rock Mech Rock Eng 49 1227-1245
[8]  
Donati D(2016)A combined remote sensing–numerical modelling approach to the stability analysis of delabole slate quarry, Cornwall, UK Rock Mech Rock Eng 228 97-106
[9]  
Stead D(2017)Investigating the impact of the estimation error of fracture intensity (P32) on the evaluation of in-situ rock fragmentation and potential of blocks forming around tunnels Tunn Undergr Sp Technol 17 215-232
[10]  
Elmo D(2020)Spatial modeling of discontinuity intensity from borehole observations at El Teniente mine, Chile Eng Geol 21 345-347