Central limit theorem for linear eigenvalue statistics of the Wigner and the sample covariance random matrices

被引:1
作者
Anna Lytova
Leonid Pastur
机构
[1] B. Verkin Institute for Low Temperature Physics,Mathematical Division
来源
Metrika | 2009年 / 69卷
关键词
Random matrices; Linear eigenvalue statistics; Central limit theorem;
D O I
暂无
中图分类号
学科分类号
摘要
We consider n × n real symmetric random matrices n−1/2W with independent (modulo symmetry condition) entries and the (null) sample covariance matrices n−1ATA with independent entries of m × n matrix A. Assuming first that the 4th cumulant (excess) κ4 of entries of W and A is zero and that their 4th moments satisfy a Lindeberg type condition, we prove that linear statistics of eigenvalues of the above matrices satisfy the central limit theorem (CLT) as n → ∞, m → ∞, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${m/n\rightarrow c\in[0,\infty)}$$\end{document} with the same variance as for Gaussian matrices if the test functions of statistics are smooth enough (essentially of the class \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{C}^5}$$\end{document}). This is done by using a simple “interpolation trick”. Then, by using a more elaborated techniques, we prove the CLT in the case of non-zero excess of entries for essentially \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{C}^4}$$\end{document} test function. Here the variance contains additional term proportional to κ4. The proofs of all limit theorems follow essentially the same scheme.
引用
收藏
页码:153 / 172
页数:19
相关论文
共 30 条
[1]  
Anderson GW(2006)CLT for a band matrix model Probab Theory Related Fields 134 283-338
[2]  
Zeitouni O(1999)Methodologies in spectral analysis of large dimensional random matrices: a review Stat Sin 9 611-677
[3]  
Bai ZD(2004)CLT for linear spectral statistics of large dimensional sample covariance matrices Ann Prob 32 553-605
[4]  
Bai ZD(2001)Fluctuations de la loi empirique de grandes matrices aléatoires Ann Inst Henri Poincaré, Probab Stat 37 373-402
[5]  
Silverstein JW(2004)A new method for bounding rates of convergence of empirical spectral distributions J Theor Probab 17 1003-1019
[6]  
Cabanal-Duvillard T(1995)Gaussian fluctuations in random matrices Phys Rev Lett 75 69-72
[7]  
Chatterjee S(2001)Linear functionals of eigenvalues of random matrices Trans AMS 353 2615-2633
[8]  
Bose A(2002)Large deviations, upper bounds, and central limit theorems for non-commutative functionals of Gaussian large random matrices Ann Inst Henri Poincaré, Probab Stat 38 341-384
[9]  
Costin O(1998)On fluctuations of eigenvalues of random hermitian matrices Duke Math J 91 151-204
[10]  
Lebowitz JL(1982)Some limit theorems for the eigenvalues of a sample covariance matrix J Multivariate Anal 12 1-38