Enhancing knowledge graph embedding by composite neighbors for link prediction

被引:2
|
作者
Kai Wang
Yu Liu
Xiujuan Xu
Quan Z. Sheng
机构
[1] Dalian University of Technology,School of Software, the Key Laboratory for Ubiquitous Network and Service Software of Liaoning Province
[2] Macquarie University,Department of Computing
来源
Computing | 2020年 / 102卷
关键词
Knowledge graph embedding; Link prediction; Graph memory networks; Knowledge graphs; 68T30;
D O I
暂无
中图分类号
学科分类号
摘要
Knowledge graph embedding (KGE) aims to represent entities and relations in a low-dimensional continuous vector space. Recent KGE works focus on incorporating additional information, such as local neighbors and textual descriptions, to learn valuable representations. However, the non-uniformity and redundancy hinder the effectiveness of entity features from those information sources. In this paper, we propose a novel end-to-end framework, called composite neighborhood embedding (CoNE), utilizing composite neighbors to enhance the existing KGE methods. To ease past problems, the new composite neighbors are gathered from both entity descriptions and local neighbors. We design a novel Graph Memory Networks to extract entity features from composite neighbors, and fulfill the entity representation in the target KGE method. The experimental results show that CoNE effectively enhances three different KGE methods, TransE, ConvE, and RotatE, and achieves the state-of-the-art results on four real-world large datasets. Furthermore, our approach outperforms the recent text-enhanced models with fewer parameters and calculation. The source code of our work can be obtained from https://github.com/KyneWang/CoNE.
引用
收藏
页码:2587 / 2606
页数:19
相关论文
共 50 条
  • [21] BTDE: Block Term Decomposition Embedding for Link Prediction in Knowledge Graph
    Luo, Tao
    Wei, Yifan
    Yu, Mei
    Li, Xuewei
    Zhao, Mankun
    Xu, Tianyi
    Yu, Jian
    Gao, Jie
    Yu, Ruiguo
    ECAI 2020: 24TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, 325 : 817 - 824
  • [22] Knowledge graph embedding for data mining vs. knowledge graph embedding for link prediction - two sides of the same coin?
    Portisch, Jan
    Heist, Nicolas
    Paulheim, Heiko
    SEMANTIC WEB, 2022, 13 (03) : 399 - 422
  • [23] HGCGE: hyperbolic graph convolutional networks-based knowledge graph embedding for link prediction
    Bao, Liming
    Wang, Yan
    Song, Xiaoyu
    Sun, Tao
    KNOWLEDGE AND INFORMATION SYSTEMS, 2024, : 661 - 687
  • [24] Discriminative Path-Based Knowledge Graph Embedding for Precise Link Prediction
    Zhang, Maoyuan
    Wang, Qi
    Xu, Wukui
    Li, Wei
    Sun, Shuyuan
    ADVANCES IN INFORMATION RETRIEVAL (ECIR 2018), 2018, 10772 : 276 - 288
  • [25] A Federated Multi-Server Knowledge Graph Embedding Framework For Link Prediction
    Hu, Ce
    Liu, Baisong
    Zhang, Xueyuan
    Wang, Zhiye
    Lin, Chennan
    Luo, Linze
    2022 IEEE 34TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, ICTAI, 2022, : 366 - 371
  • [26] Beyond Triplets: Hyper-Relational Knowledge Graph Embedding for Link Prediction
    Rosso, Paolo
    Yang, Dingqi
    Cudre-Mauroux, Philippe
    WEB CONFERENCE 2020: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2020), 2020, : 1885 - 1896
  • [27] RotatHS: Rotation Embedding on the Hyperplane with Soft Constraints for Link Prediction on Knowledge Graph
    Le, Thanh
    Huynh, Ngoc
    Le, Bac
    COMPUTATIONAL COLLECTIVE INTELLIGENCE (ICCCI 2021), 2021, 12876 : 29 - 41
  • [28] Hierarchical-aware relation rotational knowledge graph embedding for link prediction
    Wang, Shensi
    Fu, Kun
    Sun, Xian
    Zhang, Zequn
    Li, Shuchao
    Jin, Li
    NEUROCOMPUTING, 2021, 458 (458) : 259 - 270
  • [29] Link Prediction on Knowledge Graph by Rotation Embedding on the Hyperplane in the Complex Vector Space
    Thanh Le
    Ngoc Huynh
    Bac Le
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2021, PT III, 2021, 12893 : 164 - 175
  • [30] Link Prediction Based on Data Augmentation and Metric Learning Knowledge Graph Embedding
    Duan, Lijuan
    Han, Shengwen
    Jiang, Wei
    He, Meng
    Qiao, Yuanhua
    APPLIED SCIENCES-BASEL, 2024, 14 (08):