Enhancing knowledge graph embedding by composite neighbors for link prediction

被引:2
|
作者
Kai Wang
Yu Liu
Xiujuan Xu
Quan Z. Sheng
机构
[1] Dalian University of Technology,School of Software, the Key Laboratory for Ubiquitous Network and Service Software of Liaoning Province
[2] Macquarie University,Department of Computing
来源
Computing | 2020年 / 102卷
关键词
Knowledge graph embedding; Link prediction; Graph memory networks; Knowledge graphs; 68T30;
D O I
暂无
中图分类号
学科分类号
摘要
Knowledge graph embedding (KGE) aims to represent entities and relations in a low-dimensional continuous vector space. Recent KGE works focus on incorporating additional information, such as local neighbors and textual descriptions, to learn valuable representations. However, the non-uniformity and redundancy hinder the effectiveness of entity features from those information sources. In this paper, we propose a novel end-to-end framework, called composite neighborhood embedding (CoNE), utilizing composite neighbors to enhance the existing KGE methods. To ease past problems, the new composite neighbors are gathered from both entity descriptions and local neighbors. We design a novel Graph Memory Networks to extract entity features from composite neighbors, and fulfill the entity representation in the target KGE method. The experimental results show that CoNE effectively enhances three different KGE methods, TransE, ConvE, and RotatE, and achieves the state-of-the-art results on four real-world large datasets. Furthermore, our approach outperforms the recent text-enhanced models with fewer parameters and calculation. The source code of our work can be obtained from https://github.com/KyneWang/CoNE.
引用
收藏
页码:2587 / 2606
页数:19
相关论文
共 50 条
  • [1] Enhancing knowledge graph embedding by composite neighbors for link prediction
    Wang, Kai
    Liu, Yu
    Xu, Xiujuan
    Sheng, Quan Z.
    COMPUTING, 2020, 102 (12) : 2587 - 2606
  • [2] Knowledge Graph Embedding for Link Prediction: A Comparative Analysis
    Rossi, Andrea
    Barbosa, Denilson
    Firmani, Donatella
    Matinata, Antonio
    Merialdo, Paolo
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2021, 15 (02)
  • [3] A Hierarchical Knowledge Graph Embedding Framework for Link Prediction
    Liu, Shuang
    Hou, Chengwang
    Meng, Jiana
    Chen, Peng
    Kolmanic, Simon
    IEEE ACCESS, 2024, 12 : 173338 - 173350
  • [4] Embedding based Link Prediction for Knowledge Graph Completion
    Biswas, Russa
    CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, 2020, : 3221 - 3224
  • [5] Scaling Knowledge Graph Embedding Models for Link Prediction
    Sheikh, Nasrullah
    Qin, Xiao
    Reinwald, Berthold
    Lei, Chuan
    PROCEEDINGS OF THE 2022 2ND EUROPEAN WORKSHOP ON MACHINE LEARNING AND SYSTEMS (EUROMLSYS '22), 2022, : 87 - 94
  • [6] Open Knowledge Graph Link Prediction with Segmented Embedding
    Xie, Tingyu
    Peng, Peng
    Wang, Hongwei
    Liu, Yusheng
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [7] Knowledge Graph Embedding for Link Prediction and Triplet Classification
    Shijia, E.
    Jia, Shengbin
    Xiang, Yang
    Ji, Zilian
    KNOWLEDGE GRAPH AND SEMANTIC COMPUTING: SEMANTIC, KNOWLEDGE, AND LINKED BIG DATA, 2016, 650 : 228 - 232
  • [8] Knowledge graph embedding by projection and rotation on hyperplanes for link prediction
    Thanh Le
    Ngoc Huynh
    Bac Le
    APPLIED INTELLIGENCE, 2023, 53 (09) : 10340 - 10364
  • [9] LineaRE: Simple but Powerful Knowledge Graph Embedding for Link Prediction
    Peng, Yanhui
    Zhang, Jing
    20TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2020), 2020, : 422 - 431
  • [10] Knowledge graph embedding with inverse function representation for link prediction
    Zhang, Qianjin
    Xu, Yandan
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 127